Creep failure time prediction of polymers and polymer composites

A theoretical approach for the prediction of creep rupture time of polymers and polymer composites is analyzed in the present work. This analysis takes into account the viscoelastic path at small strains and the viscoplastic path at higher stresses. The calculation of the rate of creep strain is bas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Composites science and technology 2012-05, Vol.72 (9), p.959-964
Hauptverfasser: Spathis, G., Kontou, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A theoretical approach for the prediction of creep rupture time of polymers and polymer composites is analyzed in the present work. This analysis takes into account the viscoelastic path at small strains and the viscoplastic path at higher stresses. The calculation of the rate of creep strain is based on a thermally activated rate process, while the emergence and growth of plastic strain, with increasing creep time, is also taken into account. When the accumulated strain attains values, high enough to lead to failure, its slope versus time exhibits an abrupt change. At this specific time, the creep rate function in respect to time appears a minimum. The creep failure time is defined as the time where the creep rate takes its minimum value. The model has been tested for various types of polymeric materials, as well as for polymer composites. Once the model parameters are estimated from short time creep strain data, then it was proved to successfully predict the creep failure time at a variety of stress levels, for all material types examined.
ISSN:0266-3538
1879-1050
DOI:10.1016/j.compscitech.2012.03.018