Temperature-based fluorescence measurements of pyrene in block copolymer micelles: Probing micelle core glass transition breadths

Glass transition temperature (Tg) breadths are reported for polystyrene (PS) micelle cores in two series of micelle‐forming block copolymers [PS‐poly(ethylene oxide) and PS‐poly(methyl methacrylate)] with an ionic liquid solvent (1‐ethyl‐3‐methylimidazolium bis(trifluoromethylsulfonyl)amide). An inc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of polymer science. Part B, Polymer physics Polymer physics, 2012-04, Vol.50 (7), p.500-515
Hauptverfasser: Mok, Michelle M., Lodge, Timothy P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Glass transition temperature (Tg) breadths are reported for polystyrene (PS) micelle cores in two series of micelle‐forming block copolymers [PS‐poly(ethylene oxide) and PS‐poly(methyl methacrylate)] with an ionic liquid solvent (1‐ethyl‐3‐methylimidazolium bis(trifluoromethylsulfonyl)amide). An increased level of fluorescent molecules was induced within the cores upon rapid cooling followed by aging. Using fluorescence to monitor dye release with relaxation of this state upon heating, transition onset and end‐point temperatures were defined. The system with the lowest PS‐block molecular weight showed no evidence of a transition above 25 °C; however, in every other case, transitions were observed beginning at ∼40‐45 °C and ending at ∼60‐85 °C. These temperatures closely match PS‐block Tg results measured by differential scanning calorimetry in semidilute solutions of the same materials, suggesting that the transition temperature range correlates strongly to the transition of the cores from fully glassy to fully rubbery. Differences in transition end‐points were related to PS‐block molecular weights and relative copolymer fractions of PS. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012 Measurements of block copolymer micelle core glass transition temperatures (Tgs) are challenging, given the nanoscale volumes and small volume fractions being probed. Introduced here is a method for quantifying Tg breadths in micelle cores by inducing an increased level of pyrene molecules in the micelle cores and then monitoring their release upon heating using fluorescence. These release temperature ranges correlate closely to Tg results measured by DSC in semidilute solutions of the same materials.
ISSN:0887-6266
1099-0488
DOI:10.1002/polb.23029