The biological activity of ubiquitinated BoNT/B light chain in vitro and in human SHSY-5Y neuronal cells
BoNT/B light chain is a zinc‐dependent endopeptidase. After entering its target, the neuronal cell, BoNT/B is responsible for synaptobrevin‐2 (VAMP‐2) cleavage. This results in reduced neurotransmitter (acetylcholine) release from synaptic vesicles, yielding muscular paralysis. Since the toxin persi...
Gespeichert in:
Veröffentlicht in: | Journal of cellular biochemistry 2009-10, Vol.108 (3), p.660-667 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | BoNT/B light chain is a zinc‐dependent endopeptidase. After entering its target, the neuronal cell, BoNT/B is responsible for synaptobrevin‐2 (VAMP‐2) cleavage. This results in reduced neurotransmitter (acetylcholine) release from synaptic vesicles, yielding muscular paralysis. Since the toxin persists in neuronal cells for an extended period, regeneration of VAMP‐2 is prevented. We evaluated therapeutic targets to overcome botulinum persistence because early removal would rescue the neuronal cell. The ubiquitination/proteasome cellular pathway is responsible for removing “old” or undesirable proteins. Therefore, we assessed ubiquitination of BoNT/B light chain in vitro, and characterized the effects of ubiquitination modulating drugs, PMA (phorbol 12‐myristate 13‐acetate) and expoxomicin, on ubiquitination of BoNT/B light chain in neuronal cells. Both drugs altered BoNT/B light chain ubiquitination. Ubiquitination in vitro and in cells decreased the biological activity of BoNT/B light chain. These results further elucidate BoNT protein degradation pathways in intoxicated neuronal cells and mechanisms to enhance toxin removal. J. Cell. Biochem. 108: 660–667, 2009. Published 2009 Wiley‐Liss, Inc. |
---|---|
ISSN: | 0730-2312 1097-4644 1097-4644 |
DOI: | 10.1002/jcb.22300 |