N-glycosylation alters cadherin-mediated intercellular binding kinetics
We present direct evidence that the N-glycosylation state of neural cadherin impacts the intrinsic kinetics of cadherin-mediated intercellular binding. Micropipette manipulation measurements quantified the effect of N-glycosylation mutations on intercellular binding dynamics. The wild-type protein e...
Gespeichert in:
Veröffentlicht in: | Journal of cell science 2012-05, Vol.125 (Pt 10), p.2478-2485 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present direct evidence that the N-glycosylation state of neural cadherin impacts the intrinsic kinetics of cadherin-mediated intercellular binding. Micropipette manipulation measurements quantified the effect of N-glycosylation mutations on intercellular binding dynamics. The wild-type protein exhibits a two-stage binding process in which a fast, initial binding step is followed by a short lag and second, slower transition to the final binding stage. Mutations that ablate N-glycosylation at three sites on the extracellular domains 2 and 3 of neural cadherin alter this kinetic fingerprint. Glycosylation does not affect the affinities between the adhesive N-terminal domains, but instead modulates additional cadherin interactions, which govern the dynamics of intercellular binding. These results, together with previous findings that these hypo-glycosylation mutations increase the prevalence of cis dimers on cell membranes, suggest a binding mechanism in which initial adhesion is followed by additional cadherin interactions, which enhance binding but are modulated by N-glycosylation. Given that oncogene expression drives specific changes in N-glycosylation, these results provide insight into possible mechanisms altering cadherin function during tumor progression. |
---|---|
ISSN: | 0021-9533 1477-9137 |
DOI: | 10.1242/jcs.101147 |