X-ray spectroscopy of blocked alanine in water solution from supermolecular and supermolecular-continuum solvation models: a first-principles study

The N1s near-edge X-ray absorption fine structure (NEXAFS) and X-ray emission spectra (XES) of blocked alanine in water solution have been investigated at the first-principles level based on cluster models constructed from classical molecular dynamics simulations. The bulk solvent has been described...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2012-07, Vol.14 (27), p.9666-9675
Hauptverfasser: Hua, Weijie, Ai, Yue-Jie, Gao, Bin, Li, Hongbao, Ågren, Hans, Luo, Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The N1s near-edge X-ray absorption fine structure (NEXAFS) and X-ray emission spectra (XES) of blocked alanine in water solution have been investigated at the first-principles level based on cluster models constructed from classical molecular dynamics simulations. The bulk solvent has been described by both supermolecular and combined supermolecular-continuum models. With the former model we show that NEXAFS spectra convergent with respect to system size require at least the inclusion of the second solvation shell and that averaged spectra over several hundreds of snapshots can well represent the statistical effect of different instantaneous configurations of the solvation shells. With the combined model we demonstrate that calculations of a medium-sized peptide-water supermolecule qualitatively predict the NEXAFS spectrum of the solvated peptide even considering a single geometry. Furthermore, sampling over hundreds of snapshots by the combined model, the explicit inclusion of even a few waters yields an averaged spectrum in good quantitative agreement with the discrete model results. In comparison, the XES spectra show little dependence on the structures of either the solvent shell or the peptide itself. The ramifications of these findings are discussed. X-ray absorption and emission spectra of blocked alanine in water solution were calculated based on supermolecular and supermolecular-continuum solvation models.
ISSN:1463-9076
1463-9084
1463-9084
DOI:10.1039/c2cp40732a