Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets

Only four mutations in H5N1 HA are required to enable ferret-to-ferret transmission of a reassortant virus containing the H5 HA and the remaining seven gene segments from a human pandemic H1N1 influenza virus. Elements involved in H5N1 transmission Whether avian H5N1 viruses can gain the ability to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2012-06, Vol.486 (7403), p.420-428
Hauptverfasser: Imai, Masaki, Watanabe, Tokiko, Hatta, Masato, Das, Subash C., Ozawa, Makoto, Shinya, Kyoko, Zhong, Gongxun, Hanson, Anthony, Katsura, Hiroaki, Watanabe, Shinji, Li, Chengjun, Kawakami, Eiryo, Yamada, Shinya, Kiso, Maki, Suzuki, Yasuo, Maher, Eileen A., Neumann, Gabriele, Kawaoka, Yoshihiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Only four mutations in H5N1 HA are required to enable ferret-to-ferret transmission of a reassortant virus containing the H5 HA and the remaining seven gene segments from a human pandemic H1N1 influenza virus. Elements involved in H5N1 transmission Whether avian H5N1 viruses can gain the ability to transmit between humans was uncertain. The viral haemagglutinin protein (HA) mediates virus binding to host-specific cellular receptors, but previous studies have shown that alterations in HA that enable binding to human-type receptors are not sufficient to enable respiratory droplet transmission of H5N1 viruses in ferrets, the best animal model for human-to-human transmission. Imai et al . show that only four mutations in H5N1 HA are required to enable ferret-to-ferret transmission of a reassortant virus containing H5 HA, with the remaining genes from human pandemic H1N1 influenza virus. It is probable that further adaptations in other avian virus genes would be required to mediate transmission of wholly avian H5N1 in mammals, but human H1N1 and H5N1 viruses are genetically compatible and the emergence of H5-HA-containing viruses might be expected to cause a pandemic because humans lack immunity to H5 viruses. Knowledge of the mutations involved in adapting H5 HA to mammalian transmission could help with surveillance and monitoring of H5N1 viruses adapting towards pandemic potential. Highly pathogenic avian H5N1 influenza A viruses occasionally infect humans, but currently do not transmit efficiently among humans. The viral haemagglutinin (HA) protein is a known host-range determinant as it mediates virus binding to host-specific cellular receptors 1 , 2 , 3 . Here we assess the molecular changes in HA that would allow a virus possessing subtype H5 HA to be transmissible among mammals. We identified a reassortant H5 HA/H1N1 virus—comprising H5 HA (from an H5N1 virus) with four mutations and the remaining seven gene segments from a 2009 pandemic H1N1 virus—that was capable of droplet transmission in a ferret model. The transmissible H5 reassortant virus preferentially recognized human-type receptors, replicated efficiently in ferrets, caused lung lesions and weight loss, but was not highly pathogenic and did not cause mortality. These results indicate that H5 HA can convert to an HA that supports efficient viral transmission in mammals; however, we do not know whether the four mutations in the H5 HA identified here would render a wholly avian H5N1 virus transmis
ISSN:0028-0836
1476-4687
DOI:10.1038/nature10831