Aqueous CdPbS quantum dots for near-infrared imaging
Quantum dots (QDs) are semiconducting nanocrystals that have photoluminescent (PL) properties brighter than fluorescent molecules and do not photo-bleach, ideal for in vivo imaging of diseased tissues or monitoring of biological processes. Near-infrared (NIR) fluorescent light within the window of 7...
Gespeichert in:
Veröffentlicht in: | Nanotechnology 2012-07, Vol.23 (27), p.275601-275601 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Quantum dots (QDs) are semiconducting nanocrystals that have photoluminescent (PL) properties brighter than fluorescent molecules and do not photo-bleach, ideal for in vivo imaging of diseased tissues or monitoring of biological processes. Near-infrared (NIR) fluorescent light within the window of 700-1000 nm, which is separated from the major absorption peaks of hemoglobin and water, has the potential to be detected several millimeters under the surface with minimal interference from tissue autofluorescence. Here we report the synthesis and bioimaging demonstration of a new NIR QDs system, namely, CdPbS, made by an aqueous approach with 3-mercaptopropionic acid (MPA) as the capping molecule. The aqueous-synthesized, MPA-capped CdPbS QDs exhibited an NIR emission in the range of 800-950 nm with xi ≥ 0.3, where xi denotes the initial Pb molar fraction during the synthesis. Optimal PL performance of the CdPbS QDs occurred at xi = 0.7, which was about 4 nm in size as determined by transmission electron microscopy, had a rock salt structure and a quantum yield of 12%. Imaging of CdPbS QDs was tested in membrane staining and transfection studies. Cells transfected with CdPbS QDs were shown to be visible underneath a slab of chicken muscle tissue of up to 0.7 mm in thickness without the use of multiple-photon microscopy. |
---|---|
ISSN: | 0957-4484 1361-6528 |
DOI: | 10.1088/0957-4484/23/27/275601 |