Integrating Bayesian networks and geographic information systems: Good practice examples

Bayesian networks (BNs) are becoming increasingly common in problems with spatial aspects. The degree of spatial involvement may range from spatial mapping of BN outputs based on nodes in the BN that explicitly involve geographic features, to integration of different networks based on geographic inf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Integrated environmental assessment and management 2012-07, Vol.8 (3), p.473-479
Hauptverfasser: Johnson, Sandra, Low-Choy, Sama, Mengersen, Kerrie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bayesian networks (BNs) are becoming increasingly common in problems with spatial aspects. The degree of spatial involvement may range from spatial mapping of BN outputs based on nodes in the BN that explicitly involve geographic features, to integration of different networks based on geographic information. In these situations, it is useful to consider how geographic information systems (GISs) could be used to enhance the conceptualization, quantification, and prediction of BNs. Here, we discuss some techniques that may be used to integrate GIS and BN models, with reference to some recent literature which illustrate these approaches. We then reflect on 2 case studies based on our own experience. The first involves the integration of GIS and a BN to assess the scientific factors associated with initiation of Lyngbya majuscula, a cyanobacterium that occurs in coastal waterways around the world. The 2nd case study involves the use of GISs as an aid for eliciting spatially informed expert opinion and expressing this information as prior distributions for a Bayesian model and as input into a BN. Elicitator, the prototype software package we developed for achieving this, is also briefly described. Whereas the 1st case study demonstrates a GIS‐data driven specification of conditional probability tables for BNs with complete geographical coverage for all the data layers involved, the 2nd illustrates a situation in which we do not have complete coverage and we are forced to extrapolate based on expert judgement. Integr Environ Assess Manag 2012; 8: 473–479. © SETAC
ISSN:1551-3777
1551-3793
DOI:10.1002/ieam.262