Model-based analysis of the spatial variability and long-term trends of soil drought at Scots pine stands in northeastern Germany

Soil water availability determines the vitality of trees and forest stands to a large degree. Over the last decades, an increasing number of drought spells has been observed in several parts of Europe. Our study aims to estimate long-term trends of soil drought at Scots pine ( Pinus sylvestris L.) s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of forest research 2012-07, Vol.131 (4), p.1013-1024
Hauptverfasser: Bauwe, Andreas, Criegee, Christian, Glatzel, Stephan, Lennartz, Bernd
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Soil water availability determines the vitality of trees and forest stands to a large degree. Over the last decades, an increasing number of drought spells has been observed in several parts of Europe. Our study aims to estimate long-term trends of soil drought at Scots pine ( Pinus sylvestris L.) stands along the prevailing climatic gradient in Mecklenburg-Western Pomerania, northeastern Germany. To this end, soil water balance simulations were carried out at 24 sites over the period from 1951 to 2009 with the physically based model LWF-BROOK90. As a threshold for soil water stress, we used 40% of relative extractable water (REW). The results indicated an increased number of drought days further east, together with declining totals of precipitation. However, specific site conditions had a large influence on the occurrence of soil drought, partly overriding the climatic differences across the study area. Soil drought has distinctly increased in the recent past, both in duration and in intensity, affecting the eastern sites more than the western sites. The increased soil dryness could be attributed to higher atmospheric evaporative demand due to higher temperatures, as well as slightly lower precipitation sums during the summer months. To mitigate the negative effects of future climate change, adaptation measures should preferably be conducted in the eastern parts of northeastern Germany.
ISSN:1612-4669
1612-4677
DOI:10.1007/s10342-011-0573-6