The Kirsh gneiss dome: an extensional metamorphic core complex from the SE Arabian Shield

A number of gneiss-cored domes and antiforms are exposed along the regional strike-slip Najd fault system in the Arabian Shield and the eastern desert of Egypt. The mode of origin is still controversial, although plausible comparisons with modern metamorphic core complexes were made in some well-stu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Arabian journal of geosciences 2012-03, Vol.5 (2), p.335-344
1. Verfasser: Al-Saleh, Ahmad M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A number of gneiss-cored domes and antiforms are exposed along the regional strike-slip Najd fault system in the Arabian Shield and the eastern desert of Egypt. The mode of origin is still controversial, although plausible comparisons with modern metamorphic core complexes were made in some well-studied areas. The Kirsh dome is located within the major Ar Rika shear zone and consists of a core of orthogneiss/migmatite and an envelope of paragneisses with locally abundant kyanite-bearing quartzites. The dome is surrounded by the low-grade metasediments of the Murdama Group and is bound from the south by a low-angle dip-slip fault. Beyond the southern strand of the Ar Rika Fault is the Kibdi Basin which hosts unmetamorphosed sediments belonging to the Jibalah Group; this group occupies scattered pull-apart basins closely associated with releasing bends along the Najd fault system. Little dating has been done on the gneiss domes of the Arabian Shield; however, recent dates from similar structures in the eastern desert and Sinai range from 580 to 620 Ma. A similar, albeit younger 40 Ar/ 39 Ar age of 557 ± 15 Ma was obtained from a biotite paragneiss south of Jabal Kirsh; this age difference probably represent the time interval it took the Kirsh rocks to cool below the biotite closure temperature and would place a lower age limit for the dome. The Kirsh dome occupies an extensional zone between left-stepping faults; movement within this zone might have caused enough decompression to trigger fluid-absent melting in the middle crust especially as the rocks cross the biotite dehydration solidus. Diapiric ascent aided by strike-slip dilatancy pumping led to the emplacement of the Kirsh rocks in their present position within the Murdama Group metasediments.
ISSN:1866-7511
1866-7538
DOI:10.1007/s12517-010-0179-1