Start-up of decentralised MBRs Part II: the use of additives as initial inoculum
This paper corresponds to the second part of a study aiming to establish the best conditions to start-up decentralised membrane bioreactors. The first part focused on the impact of different operational parameters on the start-up, whereas this second part aims to find a substitute for activated slud...
Gespeichert in:
Veröffentlicht in: | Desalination and water treatment 2012-03, Vol.41 (1-3), p.265-278 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper corresponds to the second part of a study aiming to establish the best conditions to start-up decentralised membrane bioreactors. The first part focused on the impact of different operational parameters on the start-up, whereas this second part aims to find a substitute for activated sludge to serve as initial inoculum. Both low powdered activated carbon addition and Alumin 7 (alkaline coagulant) demonstrated a low performance in terms of filterability and operation. In turn, ferrous chloride (FeCl2), due to its ability to coagulate soluble and colloidal matter, was able to create a cake layer composed of large coagulated particles acting as a prefilter. Additionally, the combination of wastewater plus FeCl2 allowing sufficient contact time before the filtration starts has demonstrated to be the best way to start-up decentralised membrane bioreactor using this additive. Eventhough some drawbacks are associated with its high acidity, i.e. low pH, high conductivity and low NH4+–N removal, the excellent filterabilities observed and the possibility to create a cake layer from “zero-biomass” convert this additive as a possible substitute for activated sludge. This is supported by particle size distribution measurements suggesting that the negative effects of fine particles are outweighed by the possibility of creating a cake layer that impedes pore blocking. |
---|---|
ISSN: | 1944-3986 1944-3994 1944-3986 |
DOI: | 10.1080/19443994.2012.664740 |