COMPARISON OF MEAN VARIANCE LIKE STRATEGIES FOR OPTIMAL ASSET ALLOCATION PROBLEMS

We determine the optimal dynamic investment policy for a mean quadratic variation objective function by numerical solution of a nonlinear Hamilton-Jacobi-Bellman (HJB) partial differential equation (PDE). We compare the efficient frontiers and optimal investment policies for three mean variance like...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Journal of Theoretical and Applied Finance (IJTAF) 2012-03, Vol.15 (2), p.1250014-1250014
Hauptverfasser: WANG, J., FORSYTH, P. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1250014
container_issue 2
container_start_page 1250014
container_title International Journal of Theoretical and Applied Finance (IJTAF)
container_volume 15
creator WANG, J.
FORSYTH, P. A.
description We determine the optimal dynamic investment policy for a mean quadratic variation objective function by numerical solution of a nonlinear Hamilton-Jacobi-Bellman (HJB) partial differential equation (PDE). We compare the efficient frontiers and optimal investment policies for three mean variance like strategies: pre-commitment mean variance, time-consistent mean variance, and mean quadratic variation, assuming realistic investment constraints (e.g. no bankruptcy, finite shorting, borrowing). When the investment policy is constrained, the efficient frontiers for all three objective functions are similar, but the optimal policies are quite different.
doi_str_mv 10.1142/S0219024912500148
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1019877467</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1019877467</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5098-65ae87fb0378600ecd0eb2191684a6dd9bc0c1cb2ea6a90c59a8d3e597aa8293</originalsourceid><addsrcrecordid>eNplUMlOwzAQtRBIVMAHcPORS8BL4sRHE6UQkTaliRA3y3EcYdTSErcsf4-jsBw4jGdGb5nxAHCO0SXGIbmqEMEckZBjEiGEw-QATHDMacAoIYdgMsDBgB-DM-dsgzBnNCKMTsB9Ws4WYplX5RyWUzjLxBw--F7M0wwW-V0Gq3op6uwmzyo4LZewXNT5TBRQVFVWQ1EUZSrq3KsXy_K6yGbVKTjq1MqZs-98AuppVqe3QVHe5KkoAh0hngQsUiaJuwbROGEIGd0i0_g9MUtCxdqWNxpprBtiFFMc6YirpKUm4rFSCeH0BFyMttt-87o3bifX1mmzWqkXs9k7if0nkzgOWeypeKTqfuNcbzq57e1a9Z-eJIcDyn8H9JrHUdObrdG_gndn7fNOdR_yTVKFI_98-iAIE5-sDzQU2wEcrSSWPxUl8mm39tZotH7f9KvWaWtedrazf0P-b_MFri2Gug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1019877467</pqid></control><display><type>article</type><title>COMPARISON OF MEAN VARIANCE LIKE STRATEGIES FOR OPTIMAL ASSET ALLOCATION PROBLEMS</title><source>World Scientific Journals (Tsinghua Mirror)</source><source>RePEc</source><source>World Scientific Journals</source><creator>WANG, J. ; FORSYTH, P. A.</creator><creatorcontrib>WANG, J. ; FORSYTH, P. A.</creatorcontrib><description>We determine the optimal dynamic investment policy for a mean quadratic variation objective function by numerical solution of a nonlinear Hamilton-Jacobi-Bellman (HJB) partial differential equation (PDE). We compare the efficient frontiers and optimal investment policies for three mean variance like strategies: pre-commitment mean variance, time-consistent mean variance, and mean quadratic variation, assuming realistic investment constraints (e.g. no bankruptcy, finite shorting, borrowing). When the investment policy is constrained, the efficient frontiers for all three objective functions are similar, but the optimal policies are quite different.</description><identifier>ISSN: 0219-0249</identifier><identifier>ISSN: 1793-6322</identifier><identifier>EISSN: 1793-6322</identifier><identifier>DOI: 10.1142/S0219024912500148</identifier><language>eng</language><publisher>World Scientific Publishing Company</publisher><subject>Applied economics ; Assets ; Comparative analysis ; Differential analysis ; HJB equation ; Investment policy ; Mathematical finance ; Mean quadratic variation investment policy ; mean variance asset allocation ; optimal control ; Variance analysis</subject><ispartof>International Journal of Theoretical and Applied Finance (IJTAF), 2012-03, Vol.15 (2), p.1250014-1250014</ispartof><rights>2012, World Scientific Publishing Company</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5098-65ae87fb0378600ecd0eb2191684a6dd9bc0c1cb2ea6a90c59a8d3e597aa8293</citedby><cites>FETCH-LOGICAL-c5098-65ae87fb0378600ecd0eb2191684a6dd9bc0c1cb2ea6a90c59a8d3e597aa8293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.worldscientific.com/doi/reader/10.1142/S0219024912500148$$EPDF$$P50$$Gworldscientific$$H</linktopdf><link.rule.ids>314,776,780,3200,3207,3994,4859,4860,27901,27902,55550,55562</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/wsiijtafx/v_3a15_3ay_3a2012_3ai_3a02_3ap_3a1250014-1-1250014-32.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>WANG, J.</creatorcontrib><creatorcontrib>FORSYTH, P. A.</creatorcontrib><title>COMPARISON OF MEAN VARIANCE LIKE STRATEGIES FOR OPTIMAL ASSET ALLOCATION PROBLEMS</title><title>International Journal of Theoretical and Applied Finance (IJTAF)</title><description>We determine the optimal dynamic investment policy for a mean quadratic variation objective function by numerical solution of a nonlinear Hamilton-Jacobi-Bellman (HJB) partial differential equation (PDE). We compare the efficient frontiers and optimal investment policies for three mean variance like strategies: pre-commitment mean variance, time-consistent mean variance, and mean quadratic variation, assuming realistic investment constraints (e.g. no bankruptcy, finite shorting, borrowing). When the investment policy is constrained, the efficient frontiers for all three objective functions are similar, but the optimal policies are quite different.</description><subject>Applied economics</subject><subject>Assets</subject><subject>Comparative analysis</subject><subject>Differential analysis</subject><subject>HJB equation</subject><subject>Investment policy</subject><subject>Mathematical finance</subject><subject>Mean quadratic variation investment policy</subject><subject>mean variance asset allocation</subject><subject>optimal control</subject><subject>Variance analysis</subject><issn>0219-0249</issn><issn>1793-6322</issn><issn>1793-6322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNplUMlOwzAQtRBIVMAHcPORS8BL4sRHE6UQkTaliRA3y3EcYdTSErcsf4-jsBw4jGdGb5nxAHCO0SXGIbmqEMEckZBjEiGEw-QATHDMacAoIYdgMsDBgB-DM-dsgzBnNCKMTsB9Ws4WYplX5RyWUzjLxBw--F7M0wwW-V0Gq3op6uwmzyo4LZewXNT5TBRQVFVWQ1EUZSrq3KsXy_K6yGbVKTjq1MqZs-98AuppVqe3QVHe5KkoAh0hngQsUiaJuwbROGEIGd0i0_g9MUtCxdqWNxpprBtiFFMc6YirpKUm4rFSCeH0BFyMttt-87o3bifX1mmzWqkXs9k7if0nkzgOWeypeKTqfuNcbzq57e1a9Z-eJIcDyn8H9JrHUdObrdG_gndn7fNOdR_yTVKFI_98-iAIE5-sDzQU2wEcrSSWPxUl8mm39tZotH7f9KvWaWtedrazf0P-b_MFri2Gug</recordid><startdate>201203</startdate><enddate>201203</enddate><creator>WANG, J.</creator><creator>FORSYTH, P. A.</creator><general>World Scientific Publishing Company</general><general>World Scientific Publishing Co. Pte. Ltd</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>201203</creationdate><title>COMPARISON OF MEAN VARIANCE LIKE STRATEGIES FOR OPTIMAL ASSET ALLOCATION PROBLEMS</title><author>WANG, J. ; FORSYTH, P. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5098-65ae87fb0378600ecd0eb2191684a6dd9bc0c1cb2ea6a90c59a8d3e597aa8293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied economics</topic><topic>Assets</topic><topic>Comparative analysis</topic><topic>Differential analysis</topic><topic>HJB equation</topic><topic>Investment policy</topic><topic>Mathematical finance</topic><topic>Mean quadratic variation investment policy</topic><topic>mean variance asset allocation</topic><topic>optimal control</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>WANG, J.</creatorcontrib><creatorcontrib>FORSYTH, P. A.</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>International Journal of Theoretical and Applied Finance (IJTAF)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>WANG, J.</au><au>FORSYTH, P. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>COMPARISON OF MEAN VARIANCE LIKE STRATEGIES FOR OPTIMAL ASSET ALLOCATION PROBLEMS</atitle><jtitle>International Journal of Theoretical and Applied Finance (IJTAF)</jtitle><date>2012-03</date><risdate>2012</risdate><volume>15</volume><issue>2</issue><spage>1250014</spage><epage>1250014</epage><pages>1250014-1250014</pages><issn>0219-0249</issn><issn>1793-6322</issn><eissn>1793-6322</eissn><abstract>We determine the optimal dynamic investment policy for a mean quadratic variation objective function by numerical solution of a nonlinear Hamilton-Jacobi-Bellman (HJB) partial differential equation (PDE). We compare the efficient frontiers and optimal investment policies for three mean variance like strategies: pre-commitment mean variance, time-consistent mean variance, and mean quadratic variation, assuming realistic investment constraints (e.g. no bankruptcy, finite shorting, borrowing). When the investment policy is constrained, the efficient frontiers for all three objective functions are similar, but the optimal policies are quite different.</abstract><pub>World Scientific Publishing Company</pub><doi>10.1142/S0219024912500148</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0219-0249
ispartof International Journal of Theoretical and Applied Finance (IJTAF), 2012-03, Vol.15 (2), p.1250014-1250014
issn 0219-0249
1793-6322
1793-6322
language eng
recordid cdi_proquest_miscellaneous_1019877467
source World Scientific Journals (Tsinghua Mirror); RePEc; World Scientific Journals
subjects Applied economics
Assets
Comparative analysis
Differential analysis
HJB equation
Investment policy
Mathematical finance
Mean quadratic variation investment policy
mean variance asset allocation
optimal control
Variance analysis
title COMPARISON OF MEAN VARIANCE LIKE STRATEGIES FOR OPTIMAL ASSET ALLOCATION PROBLEMS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T05%3A20%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=COMPARISON%20OF%20MEAN%20VARIANCE%20LIKE%20STRATEGIES%20FOR%20OPTIMAL%20ASSET%20ALLOCATION%20PROBLEMS&rft.jtitle=International%20Journal%20of%20Theoretical%20and%20Applied%20Finance%20(IJTAF)&rft.au=WANG,%20J.&rft.date=2012-03&rft.volume=15&rft.issue=2&rft.spage=1250014&rft.epage=1250014&rft.pages=1250014-1250014&rft.issn=0219-0249&rft.eissn=1793-6322&rft_id=info:doi/10.1142/S0219024912500148&rft_dat=%3Cproquest_cross%3E1019877467%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1019877467&rft_id=info:pmid/&rfr_iscdi=true