COMPARISON OF MEAN VARIANCE LIKE STRATEGIES FOR OPTIMAL ASSET ALLOCATION PROBLEMS

We determine the optimal dynamic investment policy for a mean quadratic variation objective function by numerical solution of a nonlinear Hamilton-Jacobi-Bellman (HJB) partial differential equation (PDE). We compare the efficient frontiers and optimal investment policies for three mean variance like...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Journal of Theoretical and Applied Finance (IJTAF) 2012-03, Vol.15 (2), p.1250014-1250014
Hauptverfasser: WANG, J., FORSYTH, P. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We determine the optimal dynamic investment policy for a mean quadratic variation objective function by numerical solution of a nonlinear Hamilton-Jacobi-Bellman (HJB) partial differential equation (PDE). We compare the efficient frontiers and optimal investment policies for three mean variance like strategies: pre-commitment mean variance, time-consistent mean variance, and mean quadratic variation, assuming realistic investment constraints (e.g. no bankruptcy, finite shorting, borrowing). When the investment policy is constrained, the efficient frontiers for all three objective functions are similar, but the optimal policies are quite different.
ISSN:0219-0249
1793-6322
1793-6322
DOI:10.1142/S0219024912500148