The Measure of a MAC: A Machine-Learning Protocol for Analyzing Force Majeure Clauses in M&A Agreements [with comment]

This paper develops a protocol for using a familiar data set on force majeure provisions in corporate acquisitions agreements to tokenize and calibrate a machinelearning algorithm of textual analysis. Our protocol, built on regular expression (RE) and latent semantic analysis (LSA) approaches, serve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of institutional and theoretical economics 2012-03, Vol.168 (1), p.181-208
Hauptverfasser: Talley, Eric, O'Kane, Drew, Kellner, Christian, Stremitzer, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 208
container_issue 1
container_start_page 181
container_title Journal of institutional and theoretical economics
container_volume 168
creator Talley, Eric
O'Kane, Drew
Kellner, Christian
Stremitzer, Alexander
description This paper develops a protocol for using a familiar data set on force majeure provisions in corporate acquisitions agreements to tokenize and calibrate a machinelearning algorithm of textual analysis. Our protocol, built on regular expression (RE) and latent semantic analysis (LSA) approaches, serves to replicate, correct, and extend the hand-coded data. Our preliminary results indicate that both approaches perform well, though a hybridized approach improves predictive power further. Monte Carlo simulations suggest that our results are generally robust to out-of-sample predictions. We conclude that similar approaches could be used more broadly in empirical legal scholarship, especially including in business law.
doi_str_mv 10.1628/093245612799440177
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1019876851</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41474942</jstor_id><sourcerecordid>41474942</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-93de955678e09ecb7c6c882b72248ebbd3c100035861e22cd2695611fe0448e73</originalsourceid><addsrcrecordid>eNplUUtr3DAQ9qGBpkn_QKCgU8nFiV62pNzM0qSFXdpDeipBaLXjWIstbSU5bfrrK7Mhl5xm5uN7MDNVdUHwFWmpvMaKUd60hAqlOMdEiHfV6QLWBVXvqw8p7TFmjDf4tHq6HwBtwKQ5Ago9MmjTrW5QhzbGDs5DvQYTvfOP6EcMOdgwoj5E1HkzPv9b4NsQbXEwe1gcVqOZEyTkPNp87lD3GAEm8DmhX39cHpAN0zI-nFcnvRkTfHypZ9XP2y_3q6_1-vvdt1W3ri1vaa4V24FqmlZIwArsVtjWSkm3glIuYbvdMUtw2aWRLQFK7Y62qmxOesC8EAQ7qy6PvocYfs-Qsp5csjCOxkOYkyaYKCla2ZBCpUeqjSGlCL0-RDeZ-FxIejmsfnvYIuqPoggHsK-KaYh751MGPUevmUnOulIWA708QVNMKGbFVhaY6KYnkpQuT8FMpoxUY53_vjRDnkrQp2PQPuUQX4M44YIrTtl_8CmXQg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1019876851</pqid></control><display><type>article</type><title>The Measure of a MAC: A Machine-Learning Protocol for Analyzing Force Majeure Clauses in M&amp;A Agreements [with comment]</title><source>Jstor Complete Legacy</source><source>RePEc</source><creator>Talley, Eric ; O'Kane, Drew ; Kellner, Christian ; Stremitzer, Alexander</creator><creatorcontrib>Talley, Eric ; O'Kane, Drew ; Kellner, Christian ; Stremitzer, Alexander</creatorcontrib><description>This paper develops a protocol for using a familiar data set on force majeure provisions in corporate acquisitions agreements to tokenize and calibrate a machinelearning algorithm of textual analysis. Our protocol, built on regular expression (RE) and latent semantic analysis (LSA) approaches, serves to replicate, correct, and extend the hand-coded data. Our preliminary results indicate that both approaches perform well, though a hybridized approach improves predictive power further. Monte Carlo simulations suggest that our results are generally robust to out-of-sample predictions. We conclude that similar approaches could be used more broadly in empirical legal scholarship, especially including in business law.</description><identifier>ISSN: 0932-4569</identifier><identifier>DOI: 10.1628/093245612799440177</identifier><language>eng</language><publisher>Mohr Siebeck</publisher><subject>Algorithms ; Clause ; Contract provisions ; Contracts ; Data coding ; Datasets ; Latent semantic analysis ; Latent structure analysis ; Learning ; Legal practice ; Machine learning protocol ; Market conditions ; Measurement ; Modeling ; Monte Carlo simulation ; Predictive modeling ; Semantics ; Subsidiary companies</subject><ispartof>Journal of institutional and theoretical economics, 2012-03, Vol.168 (1), p.181-208</ispartof><rights>2012 Mohr Siebeck GmbH &amp; Co. KG</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-93de955678e09ecb7c6c882b72248ebbd3c100035861e22cd2695611fe0448e73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41474942$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41474942$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,3994,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/mhrjinste/urn_3asici_3a0932-4569(201203)168_3a1_5f181_3atmoama_5f2.0.tx_5f2-0.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Talley, Eric</creatorcontrib><creatorcontrib>O'Kane, Drew</creatorcontrib><creatorcontrib>Kellner, Christian</creatorcontrib><creatorcontrib>Stremitzer, Alexander</creatorcontrib><title>The Measure of a MAC: A Machine-Learning Protocol for Analyzing Force Majeure Clauses in M&amp;A Agreements [with comment]</title><title>Journal of institutional and theoretical economics</title><description>This paper develops a protocol for using a familiar data set on force majeure provisions in corporate acquisitions agreements to tokenize and calibrate a machinelearning algorithm of textual analysis. Our protocol, built on regular expression (RE) and latent semantic analysis (LSA) approaches, serves to replicate, correct, and extend the hand-coded data. Our preliminary results indicate that both approaches perform well, though a hybridized approach improves predictive power further. Monte Carlo simulations suggest that our results are generally robust to out-of-sample predictions. We conclude that similar approaches could be used more broadly in empirical legal scholarship, especially including in business law.</description><subject>Algorithms</subject><subject>Clause</subject><subject>Contract provisions</subject><subject>Contracts</subject><subject>Data coding</subject><subject>Datasets</subject><subject>Latent semantic analysis</subject><subject>Latent structure analysis</subject><subject>Learning</subject><subject>Legal practice</subject><subject>Machine learning protocol</subject><subject>Market conditions</subject><subject>Measurement</subject><subject>Modeling</subject><subject>Monte Carlo simulation</subject><subject>Predictive modeling</subject><subject>Semantics</subject><subject>Subsidiary companies</subject><issn>0932-4569</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNplUUtr3DAQ9qGBpkn_QKCgU8nFiV62pNzM0qSFXdpDeipBaLXjWIstbSU5bfrrK7Mhl5xm5uN7MDNVdUHwFWmpvMaKUd60hAqlOMdEiHfV6QLWBVXvqw8p7TFmjDf4tHq6HwBtwKQ5Ago9MmjTrW5QhzbGDs5DvQYTvfOP6EcMOdgwoj5E1HkzPv9b4NsQbXEwe1gcVqOZEyTkPNp87lD3GAEm8DmhX39cHpAN0zI-nFcnvRkTfHypZ9XP2y_3q6_1-vvdt1W3ri1vaa4V24FqmlZIwArsVtjWSkm3glIuYbvdMUtw2aWRLQFK7Y62qmxOesC8EAQ7qy6PvocYfs-Qsp5csjCOxkOYkyaYKCla2ZBCpUeqjSGlCL0-RDeZ-FxIejmsfnvYIuqPoggHsK-KaYh751MGPUevmUnOulIWA708QVNMKGbFVhaY6KYnkpQuT8FMpoxUY53_vjRDnkrQp2PQPuUQX4M44YIrTtl_8CmXQg</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Talley, Eric</creator><creator>O'Kane, Drew</creator><creator>Kellner, Christian</creator><creator>Stremitzer, Alexander</creator><general>Mohr Siebeck</general><general>Mohr Siebeck, Tübingen</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20120301</creationdate><title>The Measure of a MAC: A Machine-Learning Protocol for Analyzing Force Majeure Clauses in M&amp;A Agreements [with comment]</title><author>Talley, Eric ; O'Kane, Drew ; Kellner, Christian ; Stremitzer, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-93de955678e09ecb7c6c882b72248ebbd3c100035861e22cd2695611fe0448e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Clause</topic><topic>Contract provisions</topic><topic>Contracts</topic><topic>Data coding</topic><topic>Datasets</topic><topic>Latent semantic analysis</topic><topic>Latent structure analysis</topic><topic>Learning</topic><topic>Legal practice</topic><topic>Machine learning protocol</topic><topic>Market conditions</topic><topic>Measurement</topic><topic>Modeling</topic><topic>Monte Carlo simulation</topic><topic>Predictive modeling</topic><topic>Semantics</topic><topic>Subsidiary companies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Talley, Eric</creatorcontrib><creatorcontrib>O'Kane, Drew</creatorcontrib><creatorcontrib>Kellner, Christian</creatorcontrib><creatorcontrib>Stremitzer, Alexander</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of institutional and theoretical economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Talley, Eric</au><au>O'Kane, Drew</au><au>Kellner, Christian</au><au>Stremitzer, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Measure of a MAC: A Machine-Learning Protocol for Analyzing Force Majeure Clauses in M&amp;A Agreements [with comment]</atitle><jtitle>Journal of institutional and theoretical economics</jtitle><date>2012-03-01</date><risdate>2012</risdate><volume>168</volume><issue>1</issue><spage>181</spage><epage>208</epage><pages>181-208</pages><issn>0932-4569</issn><abstract>This paper develops a protocol for using a familiar data set on force majeure provisions in corporate acquisitions agreements to tokenize and calibrate a machinelearning algorithm of textual analysis. Our protocol, built on regular expression (RE) and latent semantic analysis (LSA) approaches, serves to replicate, correct, and extend the hand-coded data. Our preliminary results indicate that both approaches perform well, though a hybridized approach improves predictive power further. Monte Carlo simulations suggest that our results are generally robust to out-of-sample predictions. We conclude that similar approaches could be used more broadly in empirical legal scholarship, especially including in business law.</abstract><pub>Mohr Siebeck</pub><doi>10.1628/093245612799440177</doi><tpages>28</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0932-4569
ispartof Journal of institutional and theoretical economics, 2012-03, Vol.168 (1), p.181-208
issn 0932-4569
language eng
recordid cdi_proquest_miscellaneous_1019876851
source Jstor Complete Legacy; RePEc
subjects Algorithms
Clause
Contract provisions
Contracts
Data coding
Datasets
Latent semantic analysis
Latent structure analysis
Learning
Legal practice
Machine learning protocol
Market conditions
Measurement
Modeling
Monte Carlo simulation
Predictive modeling
Semantics
Subsidiary companies
title The Measure of a MAC: A Machine-Learning Protocol for Analyzing Force Majeure Clauses in M&A Agreements [with comment]
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T03%3A15%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Measure%20of%20a%20MAC:%20A%20Machine-Learning%20Protocol%20for%20Analyzing%20Force%20Majeure%20Clauses%20in%20M&A%20Agreements%20%5Bwith%20comment%5D&rft.jtitle=Journal%20of%20institutional%20and%20theoretical%20economics&rft.au=Talley,%20Eric&rft.date=2012-03-01&rft.volume=168&rft.issue=1&rft.spage=181&rft.epage=208&rft.pages=181-208&rft.issn=0932-4569&rft_id=info:doi/10.1628/093245612799440177&rft_dat=%3Cjstor_proqu%3E41474942%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1019876851&rft_id=info:pmid/&rft_jstor_id=41474942&rfr_iscdi=true