The Measure of a MAC: A Machine-Learning Protocol for Analyzing Force Majeure Clauses in M&A Agreements [with comment]
This paper develops a protocol for using a familiar data set on force majeure provisions in corporate acquisitions agreements to tokenize and calibrate a machinelearning algorithm of textual analysis. Our protocol, built on regular expression (RE) and latent semantic analysis (LSA) approaches, serve...
Gespeichert in:
Veröffentlicht in: | Journal of institutional and theoretical economics 2012-03, Vol.168 (1), p.181-208 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 208 |
---|---|
container_issue | 1 |
container_start_page | 181 |
container_title | Journal of institutional and theoretical economics |
container_volume | 168 |
creator | Talley, Eric O'Kane, Drew Kellner, Christian Stremitzer, Alexander |
description | This paper develops a protocol for using a familiar data set on force majeure provisions in corporate acquisitions agreements to tokenize and calibrate a machinelearning algorithm of textual analysis. Our protocol, built on regular expression (RE) and latent semantic analysis (LSA) approaches, serves to replicate, correct, and extend the hand-coded data. Our preliminary results indicate that both approaches perform well, though a hybridized approach improves predictive power further. Monte Carlo simulations suggest that our results are generally robust to out-of-sample predictions. We conclude that similar approaches could be used more broadly in empirical legal scholarship, especially including in business law. |
doi_str_mv | 10.1628/093245612799440177 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1019876851</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41474942</jstor_id><sourcerecordid>41474942</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-93de955678e09ecb7c6c882b72248ebbd3c100035861e22cd2695611fe0448e73</originalsourceid><addsrcrecordid>eNplUUtr3DAQ9qGBpkn_QKCgU8nFiV62pNzM0qSFXdpDeipBaLXjWIstbSU5bfrrK7Mhl5xm5uN7MDNVdUHwFWmpvMaKUd60hAqlOMdEiHfV6QLWBVXvqw8p7TFmjDf4tHq6HwBtwKQ5Ago9MmjTrW5QhzbGDs5DvQYTvfOP6EcMOdgwoj5E1HkzPv9b4NsQbXEwe1gcVqOZEyTkPNp87lD3GAEm8DmhX39cHpAN0zI-nFcnvRkTfHypZ9XP2y_3q6_1-vvdt1W3ri1vaa4V24FqmlZIwArsVtjWSkm3glIuYbvdMUtw2aWRLQFK7Y62qmxOesC8EAQ7qy6PvocYfs-Qsp5csjCOxkOYkyaYKCla2ZBCpUeqjSGlCL0-RDeZ-FxIejmsfnvYIuqPoggHsK-KaYh751MGPUevmUnOulIWA708QVNMKGbFVhaY6KYnkpQuT8FMpoxUY53_vjRDnkrQp2PQPuUQX4M44YIrTtl_8CmXQg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1019876851</pqid></control><display><type>article</type><title>The Measure of a MAC: A Machine-Learning Protocol for Analyzing Force Majeure Clauses in M&A Agreements [with comment]</title><source>Jstor Complete Legacy</source><source>RePEc</source><creator>Talley, Eric ; O'Kane, Drew ; Kellner, Christian ; Stremitzer, Alexander</creator><creatorcontrib>Talley, Eric ; O'Kane, Drew ; Kellner, Christian ; Stremitzer, Alexander</creatorcontrib><description>This paper develops a protocol for using a familiar data set on force majeure provisions in corporate acquisitions agreements to tokenize and calibrate a machinelearning algorithm of textual analysis. Our protocol, built on regular expression (RE) and latent semantic analysis (LSA) approaches, serves to replicate, correct, and extend the hand-coded data. Our preliminary results indicate that both approaches perform well, though a hybridized approach improves predictive power further. Monte Carlo simulations suggest that our results are generally robust to out-of-sample predictions. We conclude that similar approaches could be used more broadly in empirical legal scholarship, especially including in business law.</description><identifier>ISSN: 0932-4569</identifier><identifier>DOI: 10.1628/093245612799440177</identifier><language>eng</language><publisher>Mohr Siebeck</publisher><subject>Algorithms ; Clause ; Contract provisions ; Contracts ; Data coding ; Datasets ; Latent semantic analysis ; Latent structure analysis ; Learning ; Legal practice ; Machine learning protocol ; Market conditions ; Measurement ; Modeling ; Monte Carlo simulation ; Predictive modeling ; Semantics ; Subsidiary companies</subject><ispartof>Journal of institutional and theoretical economics, 2012-03, Vol.168 (1), p.181-208</ispartof><rights>2012 Mohr Siebeck GmbH & Co. KG</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-93de955678e09ecb7c6c882b72248ebbd3c100035861e22cd2695611fe0448e73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41474942$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41474942$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,3994,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/mhrjinste/urn_3asici_3a0932-4569(201203)168_3a1_5f181_3atmoama_5f2.0.tx_5f2-0.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Talley, Eric</creatorcontrib><creatorcontrib>O'Kane, Drew</creatorcontrib><creatorcontrib>Kellner, Christian</creatorcontrib><creatorcontrib>Stremitzer, Alexander</creatorcontrib><title>The Measure of a MAC: A Machine-Learning Protocol for Analyzing Force Majeure Clauses in M&A Agreements [with comment]</title><title>Journal of institutional and theoretical economics</title><description>This paper develops a protocol for using a familiar data set on force majeure provisions in corporate acquisitions agreements to tokenize and calibrate a machinelearning algorithm of textual analysis. Our protocol, built on regular expression (RE) and latent semantic analysis (LSA) approaches, serves to replicate, correct, and extend the hand-coded data. Our preliminary results indicate that both approaches perform well, though a hybridized approach improves predictive power further. Monte Carlo simulations suggest that our results are generally robust to out-of-sample predictions. We conclude that similar approaches could be used more broadly in empirical legal scholarship, especially including in business law.</description><subject>Algorithms</subject><subject>Clause</subject><subject>Contract provisions</subject><subject>Contracts</subject><subject>Data coding</subject><subject>Datasets</subject><subject>Latent semantic analysis</subject><subject>Latent structure analysis</subject><subject>Learning</subject><subject>Legal practice</subject><subject>Machine learning protocol</subject><subject>Market conditions</subject><subject>Measurement</subject><subject>Modeling</subject><subject>Monte Carlo simulation</subject><subject>Predictive modeling</subject><subject>Semantics</subject><subject>Subsidiary companies</subject><issn>0932-4569</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNplUUtr3DAQ9qGBpkn_QKCgU8nFiV62pNzM0qSFXdpDeipBaLXjWIstbSU5bfrrK7Mhl5xm5uN7MDNVdUHwFWmpvMaKUd60hAqlOMdEiHfV6QLWBVXvqw8p7TFmjDf4tHq6HwBtwKQ5Ago9MmjTrW5QhzbGDs5DvQYTvfOP6EcMOdgwoj5E1HkzPv9b4NsQbXEwe1gcVqOZEyTkPNp87lD3GAEm8DmhX39cHpAN0zI-nFcnvRkTfHypZ9XP2y_3q6_1-vvdt1W3ri1vaa4V24FqmlZIwArsVtjWSkm3glIuYbvdMUtw2aWRLQFK7Y62qmxOesC8EAQ7qy6PvocYfs-Qsp5csjCOxkOYkyaYKCla2ZBCpUeqjSGlCL0-RDeZ-FxIejmsfnvYIuqPoggHsK-KaYh751MGPUevmUnOulIWA708QVNMKGbFVhaY6KYnkpQuT8FMpoxUY53_vjRDnkrQp2PQPuUQX4M44YIrTtl_8CmXQg</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Talley, Eric</creator><creator>O'Kane, Drew</creator><creator>Kellner, Christian</creator><creator>Stremitzer, Alexander</creator><general>Mohr Siebeck</general><general>Mohr Siebeck, Tübingen</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20120301</creationdate><title>The Measure of a MAC: A Machine-Learning Protocol for Analyzing Force Majeure Clauses in M&A Agreements [with comment]</title><author>Talley, Eric ; O'Kane, Drew ; Kellner, Christian ; Stremitzer, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-93de955678e09ecb7c6c882b72248ebbd3c100035861e22cd2695611fe0448e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Clause</topic><topic>Contract provisions</topic><topic>Contracts</topic><topic>Data coding</topic><topic>Datasets</topic><topic>Latent semantic analysis</topic><topic>Latent structure analysis</topic><topic>Learning</topic><topic>Legal practice</topic><topic>Machine learning protocol</topic><topic>Market conditions</topic><topic>Measurement</topic><topic>Modeling</topic><topic>Monte Carlo simulation</topic><topic>Predictive modeling</topic><topic>Semantics</topic><topic>Subsidiary companies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Talley, Eric</creatorcontrib><creatorcontrib>O'Kane, Drew</creatorcontrib><creatorcontrib>Kellner, Christian</creatorcontrib><creatorcontrib>Stremitzer, Alexander</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of institutional and theoretical economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Talley, Eric</au><au>O'Kane, Drew</au><au>Kellner, Christian</au><au>Stremitzer, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Measure of a MAC: A Machine-Learning Protocol for Analyzing Force Majeure Clauses in M&A Agreements [with comment]</atitle><jtitle>Journal of institutional and theoretical economics</jtitle><date>2012-03-01</date><risdate>2012</risdate><volume>168</volume><issue>1</issue><spage>181</spage><epage>208</epage><pages>181-208</pages><issn>0932-4569</issn><abstract>This paper develops a protocol for using a familiar data set on force majeure provisions in corporate acquisitions agreements to tokenize and calibrate a machinelearning algorithm of textual analysis. Our protocol, built on regular expression (RE) and latent semantic analysis (LSA) approaches, serves to replicate, correct, and extend the hand-coded data. Our preliminary results indicate that both approaches perform well, though a hybridized approach improves predictive power further. Monte Carlo simulations suggest that our results are generally robust to out-of-sample predictions. We conclude that similar approaches could be used more broadly in empirical legal scholarship, especially including in business law.</abstract><pub>Mohr Siebeck</pub><doi>10.1628/093245612799440177</doi><tpages>28</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0932-4569 |
ispartof | Journal of institutional and theoretical economics, 2012-03, Vol.168 (1), p.181-208 |
issn | 0932-4569 |
language | eng |
recordid | cdi_proquest_miscellaneous_1019876851 |
source | Jstor Complete Legacy; RePEc |
subjects | Algorithms Clause Contract provisions Contracts Data coding Datasets Latent semantic analysis Latent structure analysis Learning Legal practice Machine learning protocol Market conditions Measurement Modeling Monte Carlo simulation Predictive modeling Semantics Subsidiary companies |
title | The Measure of a MAC: A Machine-Learning Protocol for Analyzing Force Majeure Clauses in M&A Agreements [with comment] |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T03%3A15%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Measure%20of%20a%20MAC:%20A%20Machine-Learning%20Protocol%20for%20Analyzing%20Force%20Majeure%20Clauses%20in%20M&A%20Agreements%20%5Bwith%20comment%5D&rft.jtitle=Journal%20of%20institutional%20and%20theoretical%20economics&rft.au=Talley,%20Eric&rft.date=2012-03-01&rft.volume=168&rft.issue=1&rft.spage=181&rft.epage=208&rft.pages=181-208&rft.issn=0932-4569&rft_id=info:doi/10.1628/093245612799440177&rft_dat=%3Cjstor_proqu%3E41474942%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1019876851&rft_id=info:pmid/&rft_jstor_id=41474942&rfr_iscdi=true |