The Measure of a MAC: A Machine-Learning Protocol for Analyzing Force Majeure Clauses in M&A Agreements [with comment]
This paper develops a protocol for using a familiar data set on force majeure provisions in corporate acquisitions agreements to tokenize and calibrate a machinelearning algorithm of textual analysis. Our protocol, built on regular expression (RE) and latent semantic analysis (LSA) approaches, serve...
Gespeichert in:
Veröffentlicht in: | Journal of institutional and theoretical economics 2012-03, Vol.168 (1), p.181-208 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper develops a protocol for using a familiar data set on force majeure provisions in corporate acquisitions agreements to tokenize and calibrate a machinelearning algorithm of textual analysis. Our protocol, built on regular expression (RE) and latent semantic analysis (LSA) approaches, serves to replicate, correct, and extend the hand-coded data. Our preliminary results indicate that both approaches perform well, though a hybridized approach improves predictive power further. Monte Carlo simulations suggest that our results are generally robust to out-of-sample predictions. We conclude that similar approaches could be used more broadly in empirical legal scholarship, especially including in business law. |
---|---|
ISSN: | 0932-4569 |
DOI: | 10.1628/093245612799440177 |