The Measure of a MAC: A Machine-Learning Protocol for Analyzing Force Majeure Clauses in M&A Agreements [with comment]

This paper develops a protocol for using a familiar data set on force majeure provisions in corporate acquisitions agreements to tokenize and calibrate a machinelearning algorithm of textual analysis. Our protocol, built on regular expression (RE) and latent semantic analysis (LSA) approaches, serve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of institutional and theoretical economics 2012-03, Vol.168 (1), p.181-208
Hauptverfasser: Talley, Eric, O'Kane, Drew, Kellner, Christian, Stremitzer, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper develops a protocol for using a familiar data set on force majeure provisions in corporate acquisitions agreements to tokenize and calibrate a machinelearning algorithm of textual analysis. Our protocol, built on regular expression (RE) and latent semantic analysis (LSA) approaches, serves to replicate, correct, and extend the hand-coded data. Our preliminary results indicate that both approaches perform well, though a hybridized approach improves predictive power further. Monte Carlo simulations suggest that our results are generally robust to out-of-sample predictions. We conclude that similar approaches could be used more broadly in empirical legal scholarship, especially including in business law.
ISSN:0932-4569
DOI:10.1628/093245612799440177