Random half-integral polytopes
We show that polytopes obtained as the convex hull of a random set of half-integral points of the 0/1 cube have rank as high as Ω ( log n / log log n ) with positive probability—even if the size of the set relative to the total number of half-integral points of the cube tends to 0. The high rank is...
Gespeichert in:
Veröffentlicht in: | Operations research letters 2011-05, Vol.39 (3), p.204-207 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 207 |
---|---|
container_issue | 3 |
container_start_page | 204 |
container_title | Operations research letters |
container_volume | 39 |
creator | Braun, Gábor Pokutta, Sebastian |
description | We show that polytopes obtained as the convex hull of a random set of half-integral points of the 0/1 cube have rank as high as
Ω
(
log
n
/
log
log
n
)
with positive probability—even if the size of the set relative to the total number of half-integral points of the cube tends to 0. The high rank is due to certain obstructions. We determine the exact threshold number, when those cease to exist. |
doi_str_mv | 10.1016/j.orl.2011.03.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1019695627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167637711000307</els_id><sourcerecordid>1019695627</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-28287f048eeb0732ce150617f0912f0e505e40bd360b792ac3fbecff7bbd7f463</originalsourceid><addsrcrecordid>eNp9kE9LxDAUxIMouFY_gBfZi-Cl9SVpkxZPsvgPFgTRc0jTF83SbWrSFfbbm2UXj54eDL-ZxwwhlxQKClTcrgof-oIBpQXwAoAfkRmtJctlKepjMkuMzAWX8pScxbgCAFnTekau3vTQ-fX8S_c2d8OEn0H389H328mPGM_JidV9xIvDzcjH48P74jlfvj69LO6XueENnXJWs1paKGvEFiRnBmkFgiapocwCVlBhCW3HBbSyYdpw26KxVrZtJ20peEZu9rlj8N8bjJNau2iw7_WAfhNV6tiIphJMJpTuURN8jAGtGoNb67BN0I4TaqXSFmq3hQKu0hbJc32I19GkpkEPxsU_IysZr1gCM3K35zB1_XEYVDQOB4OdC2gm1Xn3z5dfVxlyXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1019695627</pqid></control><display><type>article</type><title>Random half-integral polytopes</title><source>Elsevier ScienceDirect Journals</source><creator>Braun, Gábor ; Pokutta, Sebastian</creator><creatorcontrib>Braun, Gábor ; Pokutta, Sebastian</creatorcontrib><description>We show that polytopes obtained as the convex hull of a random set of half-integral points of the 0/1 cube have rank as high as
Ω
(
log
n
/
log
log
n
)
with positive probability—even if the size of the set relative to the total number of half-integral points of the cube tends to 0. The high rank is due to certain obstructions. We determine the exact threshold number, when those cease to exist.</description><identifier>ISSN: 0167-6377</identifier><identifier>EISSN: 1872-7468</identifier><identifier>DOI: 10.1016/j.orl.2011.03.003</identifier><identifier>CODEN: ORLED5</identifier><language>eng</language><publisher>Oxford: Elsevier B.V</publisher><subject>Applied sciences ; Cubes ; Cutting-plane procedures ; Exact sciences and technology ; Hulls ; Hulls (structures) ; Mathematical programming ; Obstructions ; Operational research and scientific management ; Operational research. Management science ; Operations research ; Polytopes ; Random half-integral polytopes ; Rank lower bounds ; Thresholds</subject><ispartof>Operations research letters, 2011-05, Vol.39 (3), p.204-207</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-28287f048eeb0732ce150617f0912f0e505e40bd360b792ac3fbecff7bbd7f463</citedby><cites>FETCH-LOGICAL-c391t-28287f048eeb0732ce150617f0912f0e505e40bd360b792ac3fbecff7bbd7f463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.orl.2011.03.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24235200$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Braun, Gábor</creatorcontrib><creatorcontrib>Pokutta, Sebastian</creatorcontrib><title>Random half-integral polytopes</title><title>Operations research letters</title><description>We show that polytopes obtained as the convex hull of a random set of half-integral points of the 0/1 cube have rank as high as
Ω
(
log
n
/
log
log
n
)
with positive probability—even if the size of the set relative to the total number of half-integral points of the cube tends to 0. The high rank is due to certain obstructions. We determine the exact threshold number, when those cease to exist.</description><subject>Applied sciences</subject><subject>Cubes</subject><subject>Cutting-plane procedures</subject><subject>Exact sciences and technology</subject><subject>Hulls</subject><subject>Hulls (structures)</subject><subject>Mathematical programming</subject><subject>Obstructions</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Operations research</subject><subject>Polytopes</subject><subject>Random half-integral polytopes</subject><subject>Rank lower bounds</subject><subject>Thresholds</subject><issn>0167-6377</issn><issn>1872-7468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAUxIMouFY_gBfZi-Cl9SVpkxZPsvgPFgTRc0jTF83SbWrSFfbbm2UXj54eDL-ZxwwhlxQKClTcrgof-oIBpQXwAoAfkRmtJctlKepjMkuMzAWX8pScxbgCAFnTekau3vTQ-fX8S_c2d8OEn0H389H328mPGM_JidV9xIvDzcjH48P74jlfvj69LO6XueENnXJWs1paKGvEFiRnBmkFgiapocwCVlBhCW3HBbSyYdpw26KxVrZtJ20peEZu9rlj8N8bjJNau2iw7_WAfhNV6tiIphJMJpTuURN8jAGtGoNb67BN0I4TaqXSFmq3hQKu0hbJc32I19GkpkEPxsU_IysZr1gCM3K35zB1_XEYVDQOB4OdC2gm1Xn3z5dfVxlyXw</recordid><startdate>20110501</startdate><enddate>20110501</enddate><creator>Braun, Gábor</creator><creator>Pokutta, Sebastian</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TA</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20110501</creationdate><title>Random half-integral polytopes</title><author>Braun, Gábor ; Pokutta, Sebastian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-28287f048eeb0732ce150617f0912f0e505e40bd360b792ac3fbecff7bbd7f463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Cubes</topic><topic>Cutting-plane procedures</topic><topic>Exact sciences and technology</topic><topic>Hulls</topic><topic>Hulls (structures)</topic><topic>Mathematical programming</topic><topic>Obstructions</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Operations research</topic><topic>Polytopes</topic><topic>Random half-integral polytopes</topic><topic>Rank lower bounds</topic><topic>Thresholds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Braun, Gábor</creatorcontrib><creatorcontrib>Pokutta, Sebastian</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Operations research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Braun, Gábor</au><au>Pokutta, Sebastian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Random half-integral polytopes</atitle><jtitle>Operations research letters</jtitle><date>2011-05-01</date><risdate>2011</risdate><volume>39</volume><issue>3</issue><spage>204</spage><epage>207</epage><pages>204-207</pages><issn>0167-6377</issn><eissn>1872-7468</eissn><coden>ORLED5</coden><abstract>We show that polytopes obtained as the convex hull of a random set of half-integral points of the 0/1 cube have rank as high as
Ω
(
log
n
/
log
log
n
)
with positive probability—even if the size of the set relative to the total number of half-integral points of the cube tends to 0. The high rank is due to certain obstructions. We determine the exact threshold number, when those cease to exist.</abstract><cop>Oxford</cop><pub>Elsevier B.V</pub><doi>10.1016/j.orl.2011.03.003</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-6377 |
ispartof | Operations research letters, 2011-05, Vol.39 (3), p.204-207 |
issn | 0167-6377 1872-7468 |
language | eng |
recordid | cdi_proquest_miscellaneous_1019695627 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Cubes Cutting-plane procedures Exact sciences and technology Hulls Hulls (structures) Mathematical programming Obstructions Operational research and scientific management Operational research. Management science Operations research Polytopes Random half-integral polytopes Rank lower bounds Thresholds |
title | Random half-integral polytopes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T11%3A26%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Random%20half-integral%20polytopes&rft.jtitle=Operations%20research%20letters&rft.au=Braun,%20G%C3%A1bor&rft.date=2011-05-01&rft.volume=39&rft.issue=3&rft.spage=204&rft.epage=207&rft.pages=204-207&rft.issn=0167-6377&rft.eissn=1872-7468&rft.coden=ORLED5&rft_id=info:doi/10.1016/j.orl.2011.03.003&rft_dat=%3Cproquest_cross%3E1019695627%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1019695627&rft_id=info:pmid/&rft_els_id=S0167637711000307&rfr_iscdi=true |