Random half-integral polytopes
We show that polytopes obtained as the convex hull of a random set of half-integral points of the 0/1 cube have rank as high as Ω ( log n / log log n ) with positive probability—even if the size of the set relative to the total number of half-integral points of the cube tends to 0. The high rank is...
Gespeichert in:
Veröffentlicht in: | Operations research letters 2011-05, Vol.39 (3), p.204-207 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that polytopes obtained as the convex hull of a random set of half-integral points of the 0/1 cube have rank as high as
Ω
(
log
n
/
log
log
n
)
with positive probability—even if the size of the set relative to the total number of half-integral points of the cube tends to 0. The high rank is due to certain obstructions. We determine the exact threshold number, when those cease to exist. |
---|---|
ISSN: | 0167-6377 1872-7468 |
DOI: | 10.1016/j.orl.2011.03.003 |