Random half-integral polytopes

We show that polytopes obtained as the convex hull of a random set of half-integral points of the 0/1 cube have rank as high as Ω ( log n / log log n ) with positive probability—even if the size of the set relative to the total number of half-integral points of the cube tends to 0. The high rank is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Operations research letters 2011-05, Vol.39 (3), p.204-207
Hauptverfasser: Braun, Gábor, Pokutta, Sebastian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that polytopes obtained as the convex hull of a random set of half-integral points of the 0/1 cube have rank as high as Ω ( log n / log log n ) with positive probability—even if the size of the set relative to the total number of half-integral points of the cube tends to 0. The high rank is due to certain obstructions. We determine the exact threshold number, when those cease to exist.
ISSN:0167-6377
1872-7468
DOI:10.1016/j.orl.2011.03.003