Multiview point cloud kernels for semisupervised learning Lecture Notes
In semisupervised learning (SSL), a predictive model is learn from a collection of labeled data and a typically much larger collection of unlabeled data. These paper presented a framework called multi-view point cloud regularization (MVPCR), which unifies and generalizes several semisupervised kerne...
Gespeichert in:
Veröffentlicht in: | IEEE signal processing magazine 2009-01, Vol.26 (5) |
---|---|
Hauptverfasser: | , , , |
Format: | Magazinearticle |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | |
container_title | IEEE signal processing magazine |
container_volume | 26 |
creator | Rosenberg, D Sindhwani, V Bartlett, P Niyogi, P |
description | In semisupervised learning (SSL), a predictive model is learn from a collection of labeled data and a typically much larger collection of unlabeled data. These paper presented a framework called multi-view point cloud regularization (MVPCR), which unifies and generalizes several semisupervised kernel methods that are based on data-dependent regularization in reproducing kernel Hilbert spaces (RKHSs). Special cases of MVPCR include coregularized least squares (CoRLS), manifold regularization (MR), and graph-based SSL. An accompanying theorem shows how to reduce any MVPCR problem to standard supervised learning with a new multi-view kernel. |
doi_str_mv | 10.1109/MSP.2009.933383 |
format | Magazinearticle |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1019691977</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1019691977</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_10196919773</originalsourceid><addsrcrecordid>eNqVzLsOwiAUgGEGTayX2ZXRxQpiFWbjZbDGRPemaU8NilA5oK-vgy_g9C9ffkLGnKWcMzXLz6d0zphKlRBCig5JOMvENJNS9kgf8cYYX0ihErLLown6peFNW6dtoJVxsaZ38BYM0sZ5ivDQGFvwL41QUwOlt9pe6QGqED3QowuAQ9JtSoMw-nVAJtvNZb2ftt49I2AovpMKjCktuIgFZ1wtFVerlfiDfgDJvEUY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>magazinearticle</recordtype><pqid>1019691977</pqid></control><display><type>magazinearticle</type><title>Multiview point cloud kernels for semisupervised learning Lecture Notes</title><source>IEEE Electronic Library (IEL)</source><creator>Rosenberg, D ; Sindhwani, V ; Bartlett, P ; Niyogi, P</creator><creatorcontrib>Rosenberg, D ; Sindhwani, V ; Bartlett, P ; Niyogi, P</creatorcontrib><description>In semisupervised learning (SSL), a predictive model is learn from a collection of labeled data and a typically much larger collection of unlabeled data. These paper presented a framework called multi-view point cloud regularization (MVPCR), which unifies and generalizes several semisupervised kernel methods that are based on data-dependent regularization in reproducing kernel Hilbert spaces (RKHSs). Special cases of MVPCR include coregularized least squares (CoRLS), manifold regularization (MR), and graph-based SSL. An accompanying theorem shows how to reduce any MVPCR problem to standard supervised learning with a new multi-view kernel.</description><identifier>ISSN: 1053-5888</identifier><identifier>DOI: 10.1109/MSP.2009.933383</identifier><language>eng</language><subject>Clouds ; Collection ; Kernels ; Learning ; Least squares method ; Lectures ; Regularization</subject><ispartof>IEEE signal processing magazine, 2009-01, Vol.26 (5)</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780,27902</link.rule.ids></links><search><creatorcontrib>Rosenberg, D</creatorcontrib><creatorcontrib>Sindhwani, V</creatorcontrib><creatorcontrib>Bartlett, P</creatorcontrib><creatorcontrib>Niyogi, P</creatorcontrib><title>Multiview point cloud kernels for semisupervised learning Lecture Notes</title><title>IEEE signal processing magazine</title><description>In semisupervised learning (SSL), a predictive model is learn from a collection of labeled data and a typically much larger collection of unlabeled data. These paper presented a framework called multi-view point cloud regularization (MVPCR), which unifies and generalizes several semisupervised kernel methods that are based on data-dependent regularization in reproducing kernel Hilbert spaces (RKHSs). Special cases of MVPCR include coregularized least squares (CoRLS), manifold regularization (MR), and graph-based SSL. An accompanying theorem shows how to reduce any MVPCR problem to standard supervised learning with a new multi-view kernel.</description><subject>Clouds</subject><subject>Collection</subject><subject>Kernels</subject><subject>Learning</subject><subject>Least squares method</subject><subject>Lectures</subject><subject>Regularization</subject><issn>1053-5888</issn><fulltext>true</fulltext><rsrctype>magazinearticle</rsrctype><creationdate>2009</creationdate><recordtype>magazinearticle</recordtype><recordid>eNqVzLsOwiAUgGEGTayX2ZXRxQpiFWbjZbDGRPemaU8NilA5oK-vgy_g9C9ffkLGnKWcMzXLz6d0zphKlRBCig5JOMvENJNS9kgf8cYYX0ihErLLown6peFNW6dtoJVxsaZ38BYM0sZ5ivDQGFvwL41QUwOlt9pe6QGqED3QowuAQ9JtSoMw-nVAJtvNZb2ftt49I2AovpMKjCktuIgFZ1wtFVerlfiDfgDJvEUY</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Rosenberg, D</creator><creator>Sindhwani, V</creator><creator>Bartlett, P</creator><creator>Niyogi, P</creator><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090101</creationdate><title>Multiview point cloud kernels for semisupervised learning Lecture Notes</title><author>Rosenberg, D ; Sindhwani, V ; Bartlett, P ; Niyogi, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_10196919773</frbrgroupid><rsrctype>magazinearticle</rsrctype><prefilter>magazinearticle</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Clouds</topic><topic>Collection</topic><topic>Kernels</topic><topic>Learning</topic><topic>Least squares method</topic><topic>Lectures</topic><topic>Regularization</topic><toplevel>online_resources</toplevel><creatorcontrib>Rosenberg, D</creatorcontrib><creatorcontrib>Sindhwani, V</creatorcontrib><creatorcontrib>Bartlett, P</creatorcontrib><creatorcontrib>Niyogi, P</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE signal processing magazine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rosenberg, D</au><au>Sindhwani, V</au><au>Bartlett, P</au><au>Niyogi, P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiview point cloud kernels for semisupervised learning Lecture Notes</atitle><jtitle>IEEE signal processing magazine</jtitle><date>2009-01-01</date><risdate>2009</risdate><volume>26</volume><issue>5</issue><issn>1053-5888</issn><abstract>In semisupervised learning (SSL), a predictive model is learn from a collection of labeled data and a typically much larger collection of unlabeled data. These paper presented a framework called multi-view point cloud regularization (MVPCR), which unifies and generalizes several semisupervised kernel methods that are based on data-dependent regularization in reproducing kernel Hilbert spaces (RKHSs). Special cases of MVPCR include coregularized least squares (CoRLS), manifold regularization (MR), and graph-based SSL. An accompanying theorem shows how to reduce any MVPCR problem to standard supervised learning with a new multi-view kernel.</abstract><doi>10.1109/MSP.2009.933383</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-5888 |
ispartof | IEEE signal processing magazine, 2009-01, Vol.26 (5) |
issn | 1053-5888 |
language | eng |
recordid | cdi_proquest_miscellaneous_1019691977 |
source | IEEE Electronic Library (IEL) |
subjects | Clouds Collection Kernels Learning Least squares method Lectures Regularization |
title | Multiview point cloud kernels for semisupervised learning Lecture Notes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A57%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiview%20point%20cloud%20kernels%20for%20semisupervised%20learning%20Lecture%20Notes&rft.jtitle=IEEE%20signal%20processing%20magazine&rft.au=Rosenberg,%20D&rft.date=2009-01-01&rft.volume=26&rft.issue=5&rft.issn=1053-5888&rft_id=info:doi/10.1109/MSP.2009.933383&rft_dat=%3Cproquest%3E1019691977%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1019691977&rft_id=info:pmid/&rfr_iscdi=true |