Multiview point cloud kernels for semisupervised learning Lecture Notes
In semisupervised learning (SSL), a predictive model is learn from a collection of labeled data and a typically much larger collection of unlabeled data. These paper presented a framework called multi-view point cloud regularization (MVPCR), which unifies and generalizes several semisupervised kerne...
Gespeichert in:
Veröffentlicht in: | IEEE signal processing magazine 2009-01, Vol.26 (5) |
---|---|
Hauptverfasser: | , , , |
Format: | Magazinearticle |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In semisupervised learning (SSL), a predictive model is learn from a collection of labeled data and a typically much larger collection of unlabeled data. These paper presented a framework called multi-view point cloud regularization (MVPCR), which unifies and generalizes several semisupervised kernel methods that are based on data-dependent regularization in reproducing kernel Hilbert spaces (RKHSs). Special cases of MVPCR include coregularized least squares (CoRLS), manifold regularization (MR), and graph-based SSL. An accompanying theorem shows how to reduce any MVPCR problem to standard supervised learning with a new multi-view kernel. |
---|---|
ISSN: | 1053-5888 |
DOI: | 10.1109/MSP.2009.933383 |