Bilayer manganites reveal polarons in the midst of a metallic breakdown

The origin of colossal magnetoresistance (CMR) in manganese oxides is among the most challenging problems in condensed-matter physics today. The true nature of the low-temperature electronic phase of these materials is heavily debated. By combining photoemission and tunnelling data, we show that in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature physics 2011-12, Vol.7 (12), p.978-982
Hauptverfasser: Massee, F., de Jong, S., Huang, Y., Siu, W. K., Santoso, I., Mans, A., Boothroyd, A. T., Prabhakaran, D., Follath, R., Varykhalov, A., Patthey, L., Shi, M., Goedkoop, J. B., Golden, M. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The origin of colossal magnetoresistance (CMR) in manganese oxides is among the most challenging problems in condensed-matter physics today. The true nature of the low-temperature electronic phase of these materials is heavily debated. By combining photoemission and tunnelling data, we show that in the archetypal bilayer system La 2−2 x Sr 1+2 x Mn 2 O 7 , polaronic degrees of freedom win out across the CMR region of the phase diagram. This means that the generic ground state of bilayer manganites supports a vanishing coherent quasi-particle spectral weight at the Fermi level throughout k -space. The incoherence of the charge carriers, resulting from strong electron–lattice interactions and the accompanying orbital physics, offers a unifying explanation for the anomalous charge-carrier dynamics seen in transport, optics and electron spectroscopies. The stacking number N is the key factor for true metallic behaviour, as an intergrowth-driven breakdown of the polaronic domination to give a metal possessing a traditional Fermi surface is seen in this system. Understanding the origin of colossal magnetoresistance in the manganites has proved to be one of the more difficult challenges in condensed-matter physics. An unexpected discovery of polarons in the metallic ground state of bilayer manganites could be an important clue.
ISSN:1745-2473
1745-2481
DOI:10.1038/nphys2089