Miniaturized flowthrough microdispenser with piezoceramic tripod actuation
In this paper, the further development of a silicon flowthrough microdispenser is described. Previously reported designs of the dispenser used bimorph, and later multilayered, piezoelectric actuator elements for the generation of droplets. The introduction of a multilayered actuator significantly re...
Gespeichert in:
Veröffentlicht in: | Journal of microelectromechanical systems 2005-02, Vol.14 (1), p.134-140 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, the further development of a silicon flowthrough microdispenser is described. Previously reported designs of the dispenser used bimorph, and later multilayered, piezoelectric actuator elements for the generation of droplets. The introduction of a multilayered actuator significantly reduced the voltage amplitude needed to dispense droplets. Dispenser properties relevant for chemical analysis systems, e.g., reduced sample volume, internal surface area, and dispersion, were improved by miniaturization of the device. A new actuator design, the tripod, is presented to enable further dispenser miniaturization and to facilitate device assembly. Tripod actuators were manufactured using a prototyping process, based on micromilling, for multilayer piezoceramic components. A building technique for miniaturized electrical interconnects, based on microstructured flexible printed circuits, is also suggested in line with the prospect of future miniaturization. The microfluidic properties of the tripod-actuated dispenser were evaluated. Stable droplet generation in the frequency range from 0 to 3 kHz was demonstrated, providing a maximum dispensed flow rate of 7.8 /spl mu/L/min. |
---|---|
ISSN: | 1057-7157 1941-0158 |
DOI: | 10.1109/JMEMS.2004.839000 |