Experimental model validation for a nonlinear energy harvester incorporating a bump stop
In some practical applications, cantilever beam piezoelectric energy harvesters are subjected to large amplitude base excitations which induce nonlinear behaviour in the harvester that affects their performance. In this paper, a cantilever piezoelectric energy harvester model is developed which take...
Gespeichert in:
Veröffentlicht in: | Journal of sound and vibration 2012-05, Vol.331 (11), p.2602-2623 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In some practical applications, cantilever beam piezoelectric energy harvesters are subjected to large amplitude base excitations which induce nonlinear behaviour in the harvester that affects their performance. In this paper, a cantilever piezoelectric energy harvester model is developed which takes account of geometric nonlinearity arising through the inextensible beam condition and material nonlinearity arising in the piezoelectric layers of the harvester. The model is validated against experimental measurements for different base accelerations and load resistances, and an investigation into the nonlinear behaviour indicates that nonlinear softening is caused predominantly by material nonlinearity. To reduce the beam amplitude and the resulting bending stress in the cantilever harvester, a bump stop is incorporated into the harvester design and the influence of the bump stop is modelled. Comparisons of theoretical predictions with experimental measurements indicate that taking account of the nonlinear behaviour improves the prediction significantly in some cases. Parameter studies are also conducted to investigate how the stop location and initial gap size between the harvester and stop affect the performance of the nonlinear energy harvester. |
---|---|
ISSN: | 0022-460X 1095-8568 |
DOI: | 10.1016/j.jsv.2012.01.023 |