Capturing matroid elements in unavoidable 3-connected minors
A result of Ding, Oporowski, Oxley, and Vertigan reveals that a large 3-connected matroid M has unavoidable structure. For every n>2, there is an integer f(n) so that if |E(M)|>f(n), then M has a minor isomorphic to the rank-n wheel or whirl, a rank-n spike, the cycle or bond matroid of K3,n,...
Gespeichert in:
Veröffentlicht in: | European journal of combinatorics 2012-08, Vol.33 (6), p.1100-1112 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A result of Ding, Oporowski, Oxley, and Vertigan reveals that a large 3-connected matroid M has unavoidable structure. For every n>2, there is an integer f(n) so that if |E(M)|>f(n), then M has a minor isomorphic to the rank-n wheel or whirl, a rank-n spike, the cycle or bond matroid of K3,n, or U2,n or Un−2,n. In this paper, we build on this result to determine what can be said about a large structure using a specified element e of M. In particular, we prove that, for every integer n exceeding two, there is an integer g(n) so that if |E(M)|>g(n), then e is an element of a minor of M isomorphic to the rank-n wheel or whirl, a rank-n spike, the cycle or bond matroid of K1,1,1,n, a specific single-element extension of M(K3,n) or the dual of this extension, or U2,n or Un−2,n.
► Ding et al. (1997) showed that every sufficiently large 3-connected matroid has one of seven highly structured minors. ► Every element of such a matroid can be captured in one of nine highly structured minors. ► These nine minors are modifications of the original seven. |
---|---|
ISSN: | 0195-6698 1095-9971 |
DOI: | 10.1016/j.ejc.2012.01.012 |