MPC: Current practice and challenges
Linear Model Predictive Control (MPC) continues to be the technology of choice for constrained, multivariable control applications in the process industry. Successful deployment of MPC requires “getting right” multiple aspects of the control problem. This includes the design of the underlying regula...
Gespeichert in:
Veröffentlicht in: | Control engineering practice 2012-04, Vol.20 (4), p.328-342 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Linear Model Predictive Control (MPC) continues to be the technology of choice for constrained, multivariable control applications in the process industry. Successful deployment of MPC requires “getting right” multiple aspects of the control problem. This includes the design of the underlying regulatory controls, design of the MPC(s), test design for model identification, model development, and dealing with nonlinearities. Approaches and techniques that are successfully applied in practice are described, including the challenges involved in ensuring a successful MPC application. Academic contributions are highlighted and suggestions provided for improving MPC. |
---|---|
ISSN: | 0967-0661 1873-6939 |
DOI: | 10.1016/j.conengprac.2011.12.004 |