Multi-frame blind deconvolution using sparse priors

In this paper, we propose a method for multi-frame blind deconvolution. Two sparse priors, i.e., the natural image gradient prior and an l1-norm based prior are used to regularize the latent image and point spread functions (PSFs) respectively. An alternating minimization approach is adopted to solv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics communications 2012-05, Vol.285 (9), p.2276-2288
Hauptverfasser: Dong, Wende, Feng, Huajun, Xu, Zhihai, Li, Qi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose a method for multi-frame blind deconvolution. Two sparse priors, i.e., the natural image gradient prior and an l1-norm based prior are used to regularize the latent image and point spread functions (PSFs) respectively. An alternating minimization approach is adopted to solve the resulted optimization problem. We use both gray scale blurred frames from a data set and some colored ones which are captured by a digital camera to verify the robustness of our approach. Experimental results show that the proposed method can accurately reconstruct PSFs with complex structures and the restored images are of high quality.
ISSN:0030-4018
1873-0310
DOI:10.1016/j.optcom.2011.12.105