Almost-Schur lemma

Schur’s lemma states that every Einstein manifold of dimension n  ≥ 3 has constant scalar curvature. In this short note we ask to what extent the scalar curvature is constant if the traceless Ricci tensor is assumed to be small rather than identically zero. In particular, we provide an optimal L 2 e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calculus of variations and partial differential equations 2012-03, Vol.43 (3-4), p.347-354
Hauptverfasser: Lellis, Camillo De, Topping, Peter M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Schur’s lemma states that every Einstein manifold of dimension n  ≥ 3 has constant scalar curvature. In this short note we ask to what extent the scalar curvature is constant if the traceless Ricci tensor is assumed to be small rather than identically zero. In particular, we provide an optimal L 2 estimate under suitable assumptions and show that these assumptions cannot be removed.
ISSN:0944-2669
1432-0835
DOI:10.1007/s00526-011-0413-z