Almost-Schur lemma
Schur’s lemma states that every Einstein manifold of dimension n ≥ 3 has constant scalar curvature. In this short note we ask to what extent the scalar curvature is constant if the traceless Ricci tensor is assumed to be small rather than identically zero. In particular, we provide an optimal L 2 e...
Gespeichert in:
Veröffentlicht in: | Calculus of variations and partial differential equations 2012-03, Vol.43 (3-4), p.347-354 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Schur’s lemma states that every Einstein manifold of dimension
n
≥ 3 has constant scalar curvature. In this short note we ask to what extent the scalar curvature is constant if the traceless Ricci tensor is assumed to be
small
rather than identically zero. In particular, we provide an optimal
L
2
estimate under suitable assumptions and show that these assumptions cannot be removed. |
---|---|
ISSN: | 0944-2669 1432-0835 |
DOI: | 10.1007/s00526-011-0413-z |