A density-based spatial clustering for physical constraints
We propose a spatial clustering method, called DBRS+, which aims to cluster spatial data in the presence of both obstacles and facilitators. It can handle datasets with intersected obstacles and facilitators. Without preprocessing, DBRS+ processes constraints during clustering. It can find clusters...
Gespeichert in:
Veröffentlicht in: | Journal of intelligent information systems 2012-02, Vol.38 (1), p.269-297 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose a spatial clustering method, called DBRS+, which aims to cluster spatial data in the presence of both obstacles and facilitators. It can handle datasets with intersected obstacles and facilitators. Without preprocessing, DBRS+ processes constraints during clustering. It can find clusters with arbitrary shapes. DBRS+ has been empirically evaluated using synthetic and real data sets and its performance has been compared to DBRS and three related methods for handling obstacles, namely AUTOCLUST+, DBCLuC*, and DBRS_O. |
---|---|
ISSN: | 0925-9902 1573-7675 |
DOI: | 10.1007/s10844-011-0154-7 |