Weak convergence to multifractional Brownian motion of Riemann-Liouville type in Besov spaces

We study the weak convergence of the family of processes { V n ( t )} n ∈ℕ defined by where { θ n ( u )} n ∈ℕ is a family of processes converging in law to a Brownian motion, as n →∞. We consider two cases of { θ n }. First, we construct θ n based on the well-known Donsker’s theorem and show that {...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied mathematics & computing 2012-02, Vol.38 (1-2), p.601-615
1. Verfasser: Dai, Hongshuai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 615
container_issue 1-2
container_start_page 601
container_title Journal of applied mathematics & computing
container_volume 38
creator Dai, Hongshuai
description We study the weak convergence of the family of processes { V n ( t )} n ∈ℕ defined by where { θ n ( u )} n ∈ℕ is a family of processes converging in law to a Brownian motion, as n →∞. We consider two cases of { θ n }. First, we construct θ n based on the well-known Donsker’s theorem and show that { V n ( t )} n ∈ℕ converges in law to a multifractional Brownian motion of Riemann-Liouville type, as n →∞. Second, we construct θ n based on a Poisson process, and then show that a multifractional Brownian motion of Riemann-Liouville type can be approximated in law by { V n ( t )} n ∈ℕ .
doi_str_mv 10.1007/s12190-011-0499-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1019633139</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1019633139</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-6d1da9dc5e19fc19b2344fd36d1ff2ed4c73e9f8a0e8fdac6478760884fe36853</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhQdRsFZ_gLvgyk00j3kkSyu-oCCI4kpCzNyU1JmkJjOV_ntTKgiCq1wO3zmQryhOKbmghDSXiTIqCSaUYlJKiZu9YkJFXWFGRLWf70oKXOXgsDhKaUlI3UgiJ8XbK-gPZIJfQ1yAN4CGgPqxG5yN2gwueN2hWQxf3mmP-rBNULDoyUGvvcdzF8a167rc26wAOY9mkMIapZU2kI6LA6u7BCc_77R4ub15vr7H88e7h-urOTa8FAOuW9pq2ZoKqLSGynfGy9K2POfWMmhL03CQVmgCwrba1GUjmpoIUVrgtaj4tDjf7a5i-BwhDap3yUDXaQ9hTIoSKmvOKZcZPfuDLsMY8y-TkpRJJhhjGaI7yMSQUgSrVtH1Om7yktr6VjvfKvtWW9-qyR2266TM-gXE3-H_S98PUYPR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912928222</pqid></control><display><type>article</type><title>Weak convergence to multifractional Brownian motion of Riemann-Liouville type in Besov spaces</title><source>SpringerNature Journals</source><creator>Dai, Hongshuai</creator><creatorcontrib>Dai, Hongshuai</creatorcontrib><description>We study the weak convergence of the family of processes { V n ( t )} n ∈ℕ defined by where { θ n ( u )} n ∈ℕ is a family of processes converging in law to a Brownian motion, as n →∞. We consider two cases of { θ n }. First, we construct θ n based on the well-known Donsker’s theorem and show that { V n ( t )} n ∈ℕ converges in law to a multifractional Brownian motion of Riemann-Liouville type, as n →∞. Second, we construct θ n based on a Poisson process, and then show that a multifractional Brownian motion of Riemann-Liouville type can be approximated in law by { V n ( t )} n ∈ℕ .</description><identifier>ISSN: 1598-5865</identifier><identifier>EISSN: 1865-2085</identifier><identifier>DOI: 10.1007/s12190-011-0499-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Applied mathematics ; Approximation ; Banach spaces ; Brownian motion ; Computational Mathematics and Numerical Analysis ; Construction ; Convergence ; INT ; Law ; Mathematical analysis ; Mathematical and Computational Engineering ; Mathematical functions ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Poisson distribution ; Random variables ; Studies ; Theorems ; Theory of Computation</subject><ispartof>Journal of applied mathematics &amp; computing, 2012-02, Vol.38 (1-2), p.601-615</ispartof><rights>Korean Society for Computational and Applied Mathematics 2011</rights><rights>Korean Society for Computational and Applied Mathematics 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-6d1da9dc5e19fc19b2344fd36d1ff2ed4c73e9f8a0e8fdac6478760884fe36853</citedby><cites>FETCH-LOGICAL-c348t-6d1da9dc5e19fc19b2344fd36d1ff2ed4c73e9f8a0e8fdac6478760884fe36853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12190-011-0499-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12190-011-0499-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27928,27929,41492,42561,51323</link.rule.ids></links><search><creatorcontrib>Dai, Hongshuai</creatorcontrib><title>Weak convergence to multifractional Brownian motion of Riemann-Liouville type in Besov spaces</title><title>Journal of applied mathematics &amp; computing</title><addtitle>J. Appl. Math. Comput</addtitle><description>We study the weak convergence of the family of processes { V n ( t )} n ∈ℕ defined by where { θ n ( u )} n ∈ℕ is a family of processes converging in law to a Brownian motion, as n →∞. We consider two cases of { θ n }. First, we construct θ n based on the well-known Donsker’s theorem and show that { V n ( t )} n ∈ℕ converges in law to a multifractional Brownian motion of Riemann-Liouville type, as n →∞. Second, we construct θ n based on a Poisson process, and then show that a multifractional Brownian motion of Riemann-Liouville type can be approximated in law by { V n ( t )} n ∈ℕ .</description><subject>Applied mathematics</subject><subject>Approximation</subject><subject>Banach spaces</subject><subject>Brownian motion</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Construction</subject><subject>Convergence</subject><subject>INT</subject><subject>Law</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical functions</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Poisson distribution</subject><subject>Random variables</subject><subject>Studies</subject><subject>Theorems</subject><subject>Theory of Computation</subject><issn>1598-5865</issn><issn>1865-2085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kEtLAzEUhQdRsFZ_gLvgyk00j3kkSyu-oCCI4kpCzNyU1JmkJjOV_ntTKgiCq1wO3zmQryhOKbmghDSXiTIqCSaUYlJKiZu9YkJFXWFGRLWf70oKXOXgsDhKaUlI3UgiJ8XbK-gPZIJfQ1yAN4CGgPqxG5yN2gwueN2hWQxf3mmP-rBNULDoyUGvvcdzF8a167rc26wAOY9mkMIapZU2kI6LA6u7BCc_77R4ub15vr7H88e7h-urOTa8FAOuW9pq2ZoKqLSGynfGy9K2POfWMmhL03CQVmgCwrba1GUjmpoIUVrgtaj4tDjf7a5i-BwhDap3yUDXaQ9hTIoSKmvOKZcZPfuDLsMY8y-TkpRJJhhjGaI7yMSQUgSrVtH1Om7yktr6VjvfKvtWW9-qyR2266TM-gXE3-H_S98PUYPR</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>Dai, Hongshuai</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20120201</creationdate><title>Weak convergence to multifractional Brownian motion of Riemann-Liouville type in Besov spaces</title><author>Dai, Hongshuai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-6d1da9dc5e19fc19b2344fd36d1ff2ed4c73e9f8a0e8fdac6478760884fe36853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied mathematics</topic><topic>Approximation</topic><topic>Banach spaces</topic><topic>Brownian motion</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Construction</topic><topic>Convergence</topic><topic>INT</topic><topic>Law</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical functions</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Poisson distribution</topic><topic>Random variables</topic><topic>Studies</topic><topic>Theorems</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dai, Hongshuai</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Proquest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of applied mathematics &amp; computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dai, Hongshuai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weak convergence to multifractional Brownian motion of Riemann-Liouville type in Besov spaces</atitle><jtitle>Journal of applied mathematics &amp; computing</jtitle><stitle>J. Appl. Math. Comput</stitle><date>2012-02-01</date><risdate>2012</risdate><volume>38</volume><issue>1-2</issue><spage>601</spage><epage>615</epage><pages>601-615</pages><issn>1598-5865</issn><eissn>1865-2085</eissn><abstract>We study the weak convergence of the family of processes { V n ( t )} n ∈ℕ defined by where { θ n ( u )} n ∈ℕ is a family of processes converging in law to a Brownian motion, as n →∞. We consider two cases of { θ n }. First, we construct θ n based on the well-known Donsker’s theorem and show that { V n ( t )} n ∈ℕ converges in law to a multifractional Brownian motion of Riemann-Liouville type, as n →∞. Second, we construct θ n based on a Poisson process, and then show that a multifractional Brownian motion of Riemann-Liouville type can be approximated in law by { V n ( t )} n ∈ℕ .</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s12190-011-0499-7</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1598-5865
ispartof Journal of applied mathematics & computing, 2012-02, Vol.38 (1-2), p.601-615
issn 1598-5865
1865-2085
language eng
recordid cdi_proquest_miscellaneous_1019633139
source SpringerNature Journals
subjects Applied mathematics
Approximation
Banach spaces
Brownian motion
Computational Mathematics and Numerical Analysis
Construction
Convergence
INT
Law
Mathematical analysis
Mathematical and Computational Engineering
Mathematical functions
Mathematical models
Mathematics
Mathematics and Statistics
Mathematics of Computing
Poisson distribution
Random variables
Studies
Theorems
Theory of Computation
title Weak convergence to multifractional Brownian motion of Riemann-Liouville type in Besov spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T04%3A40%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weak%20convergence%20to%20multifractional%20Brownian%20motion%20of%20Riemann-Liouville%20type%20in%20Besov%20spaces&rft.jtitle=Journal%20of%20applied%20mathematics%20&%20computing&rft.au=Dai,%20Hongshuai&rft.date=2012-02-01&rft.volume=38&rft.issue=1-2&rft.spage=601&rft.epage=615&rft.pages=601-615&rft.issn=1598-5865&rft.eissn=1865-2085&rft_id=info:doi/10.1007/s12190-011-0499-7&rft_dat=%3Cproquest_cross%3E1019633139%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912928222&rft_id=info:pmid/&rfr_iscdi=true