Weak convergence to multifractional Brownian motion of Riemann-Liouville type in Besov spaces

We study the weak convergence of the family of processes { V n ( t )} n ∈ℕ defined by where { θ n ( u )} n ∈ℕ is a family of processes converging in law to a Brownian motion, as n →∞. We consider two cases of { θ n }. First, we construct θ n based on the well-known Donsker’s theorem and show that {...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied mathematics & computing 2012-02, Vol.38 (1-2), p.601-615
1. Verfasser: Dai, Hongshuai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the weak convergence of the family of processes { V n ( t )} n ∈ℕ defined by where { θ n ( u )} n ∈ℕ is a family of processes converging in law to a Brownian motion, as n →∞. We consider two cases of { θ n }. First, we construct θ n based on the well-known Donsker’s theorem and show that { V n ( t )} n ∈ℕ converges in law to a multifractional Brownian motion of Riemann-Liouville type, as n →∞. Second, we construct θ n based on a Poisson process, and then show that a multifractional Brownian motion of Riemann-Liouville type can be approximated in law by { V n ( t )} n ∈ℕ .
ISSN:1598-5865
1865-2085
DOI:10.1007/s12190-011-0499-7