Covering models and optimization techniques for emergency response facility location and planning: a review
With emergencies being, unfortunately, part of our lives, it is crucial to efficiently plan and allocate emergency response facilities that deliver effective and timely relief to people most in need. Emergency Medical Services (EMS) allocation problems deal with locating EMS facilities among potenti...
Gespeichert in:
Veröffentlicht in: | Mathematical methods of operations research (Heidelberg, Germany) Germany), 2011-12, Vol.74 (3), p.281-310 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | With emergencies being, unfortunately, part of our lives, it is crucial to efficiently plan and allocate emergency response facilities that deliver effective and timely relief to people most in need. Emergency Medical Services (EMS) allocation problems deal with locating EMS facilities among potential sites to provide efficient and effective services over a wide area with spatially distributed demands. It is often problematic due to the intrinsic complexity of these problems. This paper reviews covering models and optimization techniques for emergency response facility location and planning in the literature from the past few decades, while emphasizing recent developments. We introduce several typical covering models and their extensions ordered from simple to complex, including Location Set Covering Problem (LSCP), Maximal Covering Location Problem (MCLP), Double Standard Model (DSM), Maximum Expected Covering Location Problem (MEXCLP), and Maximum Availability Location Problem (MALP) models. In addition, recent developments on hypercube queuing models, dynamic allocation models, gradual covering models, and cooperative covering models are also presented in this paper. The corresponding optimization techniques to solve these models, including heuristic algorithms, simulation, and exact methods, are summarized. |
---|---|
ISSN: | 1432-2994 1432-5217 |
DOI: | 10.1007/s00186-011-0363-4 |