Structure-unit cell-based approach on three-dimensional representative braided preforms from four-step braiding: Experimental determination of effects of structure-process parameters on predetermined yarn path

The aim of this study was to understand the effects of braid pattern and the number of layers on three-dimensional (3D) braided unit cell structures. Various unit cell-based representative 3D braided preforms were developed. Data generated from these structures included unit cell dimensions, yarn an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Textile research journal 2012-02, Vol.82 (3), p.220-241
Hauptverfasser: Bilisik, Kadir, Sahbaz, Nesrin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim of this study was to understand the effects of braid pattern and the number of layers on three-dimensional (3D) braided unit cell structures. Various unit cell-based representative 3D braided preforms were developed. Data generated from these structures included unit cell dimensions, yarn angle, and yarn length in the unit cell structures. It was shown that braid patterns affected the 3D braided unit cell structures. The 1 × 1 braid pattern made fully interconnected integral 3D braided unit cell structures, whereas the 2 × 1 braid pattern created disconnected braid layers that were connected to the structures edges. When the number of layers increased, 3D braided unit cell thickness also increased. Braid pattern slightly affected the braider yarn angle, whereas the number of layers did not influence it. It was observed that the number of layers considerably affected the yarn length in the unit cell structure. Increasing the layer number from five to 10 layers created a yarn path in the unit cell edge regions called the ‘multilayer yarn length’. This yarn path was not observed below five-layer 3D braided unit cell structures. In jamming conditions, minimum jamming decreased the width of the unit cell structure, but maximum jamming increased its width. On the other hand, minimum jamming decreased the surface angle of the unit cell structure, whereas maximum jamming increased the surface angle. In addition, it was realized that jamming conditions influenced the density of the unit cell but did not affect the yarn length in the unit cell structures.
ISSN:0040-5175
1746-7748
DOI:10.1177/0040517511404597