Critical percolation: the expected number of clusters in a rectangle
We show that for critical site percolation on the triangular lattice two new observables have conformally invariant scaling limits. In particular the expected number of clusters separating two pairs of points converges to an explicit conformal invariant. Our proof is independent of earlier results a...
Gespeichert in:
Veröffentlicht in: | Probability theory and related fields 2011-12, Vol.151 (3-4), p.735-756 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that for critical site percolation on the triangular lattice two new observables have conformally invariant scaling limits. In particular the expected number of clusters separating two pairs of points converges to an explicit conformal invariant. Our proof is independent of earlier results and
SLE
techniques, and might provide a new approach to establishing conformal invariance of percolation. |
---|---|
ISSN: | 0178-8051 1432-2064 |
DOI: | 10.1007/s00440-010-0313-8 |