Structural and Functional Effects of Cu Metalloprotein-Driven Silver Nanoparticle Dissolution

Interactions of a model Cu-metalloprotein, azurin, with 10–100 nm silver nanoparticles (NPs) were examined to elucidate the role of oxidative dissolution and protein interaction on the biological reactivity of NPs. Although minimal protein and NP structural changes were observed upon interaction, di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2012-06, Vol.46 (11), p.6355-6362
Hauptverfasser: Martinolich, Andrew J, Park, Grace, Nakamoto, Meagan Y, Gate, Rachel E, Wheeler, Korin E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Interactions of a model Cu-metalloprotein, azurin, with 10–100 nm silver nanoparticles (NPs) were examined to elucidate the role of oxidative dissolution and protein interaction on the biological reactivity of NPs. Although minimal protein and NP structural changes were observed upon interaction, displacement of Cu(II) and formation of Ag(I) azurin species under aerobic conditions implicates Cu(II) azurin as a catalyst of NP oxidative dissolution. Consistent with NP oxidation potentials, largest concentrations of Ag(I) azurin species were recorded in reaction with 10 nm NPs (>50%). Apo-protein was also observed under anaerobic reaction with NPs of all sizes and upon aerobic reaction with larger NPs (>20 nm), where NP oxidation is slowed. Cu(II) azurin displacement upon reaction with NPs was significantly greater than when reacted with Ag(I)(aq) alone. Regardless of NP size, dialysis experiments show minimal reactivity between azurin and the Ag(I)(aq) species formed as a result of NP oxidative dissolution, indicating Cu displacement from azurin occurs at the NP surface. Mechanisms of azurin-silver NP interaction are proposed. Results demonstrate that NP interactions not only impact protein structure and function, but also NP reactivity, with implications for targeting, uptake, and cytotoxicity.
ISSN:0013-936X
1520-5851
DOI:10.1021/es300901h