Assessments of Impacts of Climate Change and Human Activities on Runoff with SWAT for the Huifa River Basin, Northeast China
The impacts of climate change and human activates on the runoff for Huifa River Basin, Northeast China, have been investigated with the soil and water assessment tool (SWAT), which is calibrated and verified for the baseline period 1956–1964, and then used to reconstruct the natural runoff from 1965...
Gespeichert in:
Veröffentlicht in: | Water resources management 2012-06, Vol.26 (8), p.2199-2217 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The impacts of climate change and human activates on the runoff for Huifa River Basin, Northeast China, have been investigated with the soil and water assessment tool (SWAT), which is calibrated and verified for the baseline period 1956–1964, and then used to reconstruct the natural runoff from 1965 to 2005. The results indicate that both climate change and human activities are responsible for the decrease of observed runoff in Huifa River. The climate change could result in a decrease or increase of runoff depending on precipitation, temperature, radiation variation, as well as land cover changes. Its impacts on annual runoff are -36.7, -59.5, +36.9 and -45.2 mm/a for 1965–1975, 1976–1985, 1986–1995 and 1996–2005, respectively, compared with the baseline period 1956–1964. Human activities, on the other hand, generally lead to a decrease of runoff and a relatively larger magnitude than climate change after 1985. It has decreased the annual runoff by -32.9, -46.8, -67.8 and -54.9 mm/a for 1965–1975, 1976–1985, 1986–1995 and 1996–2005, respectively. Human activities contributed more to runoff decrease in wet years due to regulation and storage of the water projects. The results of this study could be a reference for regional water resources management since there are quite a number of reservoirs in the Huifa River basin. |
---|---|
ISSN: | 0920-4741 1573-1650 |
DOI: | 10.1007/s11269-012-0010-8 |