Regional groundwater flow and interactions with deep fluids in western Apennine: the case of Narni-Amelia chain (Central Italy)

The elemental fluxes and heat flow associated with large aquifer systems can be significant both at local and at regional scales. In fact, large amounts of heat transported by regional groundwater flow can affect the subsurface thermal regime, and the amount of matter discharged towards the surface...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geofluids 2012-05, Vol.12 (2), p.182-196
Hauptverfasser: FRONDINI, F., CARDELLINI, C., CALIRO, S., CHIODINI, G., MORGANTINI, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The elemental fluxes and heat flow associated with large aquifer systems can be significant both at local and at regional scales. In fact, large amounts of heat transported by regional groundwater flow can affect the subsurface thermal regime, and the amount of matter discharged towards the surface by large spring systems can be significant relative to the elemental fluxes of surface waters. The Narni‐Amelia regional aquifer system (Central Italy) discharges more than 13 m3 sec−1 of groundwater characterised by a slight thermal anomaly, high salinity and high pCO2. During circulation in the regional aquifer, groundwater reacts with the host rocks (dolostones, limestones and evaporites) and mixes with deep CO2‐rich fluids of mantle origin. These processes transfer large amounts of dissolved substances, in particular carbon dioxide, and a considerable amount of heat towards the surface. Because practically all the water circulating in the Narni‐Amelia system is discharged by few large springs (Stifone‐Montoro), the mass and energy balance of these springs can give a good estimation of the mass and heat transported from the entire system towards the surface. By means of a detailed mass and balance of the aquifer and considering the soil CO2 fluxes measured from the main gas emission of the region, we computed a total CO2 discharge of about 7.8 × 109 mol a−1 for the whole Narni‐Amelia system. Finally, considering the enthalpy difference between infiltrating water and water discharged by the springs, we computed an advective heat transfer related to groundwater flow of 410 ± 50 MW.
ISSN:1468-8115
1468-8123
DOI:10.1111/j.1468-8123.2011.00356.x