Anopheles gambiae corazonin: gene structure, expression and effect on mosquito heart physiology
Haemolymph flow in mosquitoes is primarily driven by the contraction of a dorsal vessel that is subdivided into an abdominal heart and a thoracic aorta. The factors that regulate mosquito heart contractions are not understood, but in other insects heart physiology is partially controlled by several...
Gespeichert in:
Veröffentlicht in: | Insect molecular biology 2012-06, Vol.21 (3), p.343-355 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 355 |
---|---|
container_issue | 3 |
container_start_page | 343 |
container_title | Insect molecular biology |
container_volume | 21 |
creator | Hillyer, J. F Estévez‐Lao, T. Y Funkhouser, L. J Aluoch, V. A |
description | Haemolymph flow in mosquitoes is primarily driven by the contraction of a dorsal vessel that is subdivided into an abdominal heart and a thoracic aorta. The factors that regulate mosquito heart contractions are not understood, but in other insects heart physiology is partially controlled by several neurohormones. One of these is corazonin, a neuropeptide initially discovered because of its cardioacceleratory activity in the cockroach Periplaneta americana. In the present study, we describe the corazonin gene and transcript structure in the mosquito Anopheles gambiae, characterize its developmental expression, and test its role in modulating heart physiology. We show that the A. gambiae corazonin gene encodes the most common form of the corazonin peptide ([Arg7]‐corazonin) and that it is alternatively spliced, with the only difference between the transcripts occurring in the 5′ untranslated region. Analysis of the developmental expression of corazonin and the corazonin receptor revealed that transcription of both follows a bimodal distribution, with highest mRNA levels in 2nd instar larvae and during the pupa to adult transition. Finally, experiments where mosquitoes were injected with various doses of corazonin and experiments where the transcription of corazonin and the corazonin receptor were reduced by RNA interference failed to detect a significant role for this neuropeptide in modulating mosquito heart physiology. |
doi_str_mv | 10.1111/j.1365-2583.2012.01140.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1017959882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1017959882</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5160-a74e8b151e32a392749c08ed737efd908e60835868f5aa58df36ecc4299203783</originalsourceid><addsrcrecordid>eNqNks1u1DAUhS0EotPCK4AlNixI8E_s2EgsyoiWihYWtOrS8iQ3MxmSOLUTdYanxyFlFixQvfG1_J1z5XuMEKYkpXG936aUS5EwoXjKCGUpoTQj6e4JWhwunqIF0ZIllOTiCB2HsCWEKC31c3TEWEYywfgCmdPO9RtoIOC1bVe1BVw4b3-5ru4-4DV0gMPgx2IYPbzDsOs9hFC7DtuuxFBVUAw4nloX7sZ6cHgD1g-43-wj1Lj1_gV6VtkmwMuH_QTdnH2-Xn5JLr-fXyxPL5NCUEkSm2egVlRQ4MxyzfJMF0RBmfMcqlLHUhLFhZKqEtYKVVZcQlFkTGtGeK74CXo7-_be3Y0QBtPWoYCmsR24MRhKaK6FVoo9BmWMUsJlRN_8g27d6Lv4kImiggtNeKTUTBXeheChMr2vW-v3ETJTXmZrpljMFIuZ8jJ_8jK7KH310GBctVAehH8DisDHGbivG9g_2thcXH2aqqhPZn0dBtgd9Nb_NDIOV5jbb-fm7EpfL7_KzNxG_vXMV9YZu_Z1MDc_onMWP08mc8b-SzCVxQH_BlVDw4E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1011535903</pqid></control><display><type>article</type><title>Anopheles gambiae corazonin: gene structure, expression and effect on mosquito heart physiology</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Hillyer, J. F ; Estévez‐Lao, T. Y ; Funkhouser, L. J ; Aluoch, V. A</creator><creatorcontrib>Hillyer, J. F ; Estévez‐Lao, T. Y ; Funkhouser, L. J ; Aluoch, V. A</creatorcontrib><description>Haemolymph flow in mosquitoes is primarily driven by the contraction of a dorsal vessel that is subdivided into an abdominal heart and a thoracic aorta. The factors that regulate mosquito heart contractions are not understood, but in other insects heart physiology is partially controlled by several neurohormones. One of these is corazonin, a neuropeptide initially discovered because of its cardioacceleratory activity in the cockroach Periplaneta americana. In the present study, we describe the corazonin gene and transcript structure in the mosquito Anopheles gambiae, characterize its developmental expression, and test its role in modulating heart physiology. We show that the A. gambiae corazonin gene encodes the most common form of the corazonin peptide ([Arg7]‐corazonin) and that it is alternatively spliced, with the only difference between the transcripts occurring in the 5′ untranslated region. Analysis of the developmental expression of corazonin and the corazonin receptor revealed that transcription of both follows a bimodal distribution, with highest mRNA levels in 2nd instar larvae and during the pupa to adult transition. Finally, experiments where mosquitoes were injected with various doses of corazonin and experiments where the transcription of corazonin and the corazonin receptor were reduced by RNA interference failed to detect a significant role for this neuropeptide in modulating mosquito heart physiology.</description><identifier>ISSN: 0962-1075</identifier><identifier>EISSN: 1365-2583</identifier><identifier>DOI: 10.1111/j.1365-2583.2012.01140.x</identifier><identifier>PMID: 22404523</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>alternative splicing ; Amino Acid Sequence ; Animals ; Anopheles - drug effects ; Anopheles - genetics ; Anopheles - physiology ; Anopheles gambiae ; aorta ; corazonin ; dorsal vessel ; Gene Expression Regulation - drug effects ; Gene Knockdown Techniques ; genes ; haemolymph ; heart ; Heart - drug effects ; Heart - physiology ; hemolymph ; Insect Proteins - chemistry ; Insect Proteins - genetics ; Insect Proteins - metabolism ; Insect Proteins - pharmacology ; larvae ; messenger RNA ; Molecular Sequence Data ; mosquito ; neurohormones ; neuropeptide ; Neuropeptides - chemistry ; Neuropeptides - genetics ; Neuropeptides - metabolism ; Neuropeptides - pharmacology ; Periplaneta americana ; pupae ; Receptors, Neuropeptide - genetics ; RNA interference ; RNA Interference - drug effects ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Transcription, Genetic - drug effects</subject><ispartof>Insect molecular biology, 2012-06, Vol.21 (3), p.343-355</ispartof><rights>2012 The Authors. Insect Molecular Biology © 2012 The Royal Entomological Society</rights><rights>2012 The Authors. Insect Molecular Biology © 2012 The Royal Entomological Society.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5160-a74e8b151e32a392749c08ed737efd908e60835868f5aa58df36ecc4299203783</citedby><cites>FETCH-LOGICAL-c5160-a74e8b151e32a392749c08ed737efd908e60835868f5aa58df36ecc4299203783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-2583.2012.01140.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-2583.2012.01140.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22404523$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hillyer, J. F</creatorcontrib><creatorcontrib>Estévez‐Lao, T. Y</creatorcontrib><creatorcontrib>Funkhouser, L. J</creatorcontrib><creatorcontrib>Aluoch, V. A</creatorcontrib><title>Anopheles gambiae corazonin: gene structure, expression and effect on mosquito heart physiology</title><title>Insect molecular biology</title><addtitle>Insect Mol Biol</addtitle><description>Haemolymph flow in mosquitoes is primarily driven by the contraction of a dorsal vessel that is subdivided into an abdominal heart and a thoracic aorta. The factors that regulate mosquito heart contractions are not understood, but in other insects heart physiology is partially controlled by several neurohormones. One of these is corazonin, a neuropeptide initially discovered because of its cardioacceleratory activity in the cockroach Periplaneta americana. In the present study, we describe the corazonin gene and transcript structure in the mosquito Anopheles gambiae, characterize its developmental expression, and test its role in modulating heart physiology. We show that the A. gambiae corazonin gene encodes the most common form of the corazonin peptide ([Arg7]‐corazonin) and that it is alternatively spliced, with the only difference between the transcripts occurring in the 5′ untranslated region. Analysis of the developmental expression of corazonin and the corazonin receptor revealed that transcription of both follows a bimodal distribution, with highest mRNA levels in 2nd instar larvae and during the pupa to adult transition. Finally, experiments where mosquitoes were injected with various doses of corazonin and experiments where the transcription of corazonin and the corazonin receptor were reduced by RNA interference failed to detect a significant role for this neuropeptide in modulating mosquito heart physiology.</description><subject>alternative splicing</subject><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Anopheles - drug effects</subject><subject>Anopheles - genetics</subject><subject>Anopheles - physiology</subject><subject>Anopheles gambiae</subject><subject>aorta</subject><subject>corazonin</subject><subject>dorsal vessel</subject><subject>Gene Expression Regulation - drug effects</subject><subject>Gene Knockdown Techniques</subject><subject>genes</subject><subject>haemolymph</subject><subject>heart</subject><subject>Heart - drug effects</subject><subject>Heart - physiology</subject><subject>hemolymph</subject><subject>Insect Proteins - chemistry</subject><subject>Insect Proteins - genetics</subject><subject>Insect Proteins - metabolism</subject><subject>Insect Proteins - pharmacology</subject><subject>larvae</subject><subject>messenger RNA</subject><subject>Molecular Sequence Data</subject><subject>mosquito</subject><subject>neurohormones</subject><subject>neuropeptide</subject><subject>Neuropeptides - chemistry</subject><subject>Neuropeptides - genetics</subject><subject>Neuropeptides - metabolism</subject><subject>Neuropeptides - pharmacology</subject><subject>Periplaneta americana</subject><subject>pupae</subject><subject>Receptors, Neuropeptide - genetics</subject><subject>RNA interference</subject><subject>RNA Interference - drug effects</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Transcription, Genetic - drug effects</subject><issn>0962-1075</issn><issn>1365-2583</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNks1u1DAUhS0EotPCK4AlNixI8E_s2EgsyoiWihYWtOrS8iQ3MxmSOLUTdYanxyFlFixQvfG1_J1z5XuMEKYkpXG936aUS5EwoXjKCGUpoTQj6e4JWhwunqIF0ZIllOTiCB2HsCWEKC31c3TEWEYywfgCmdPO9RtoIOC1bVe1BVw4b3-5ru4-4DV0gMPgx2IYPbzDsOs9hFC7DtuuxFBVUAw4nloX7sZ6cHgD1g-43-wj1Lj1_gV6VtkmwMuH_QTdnH2-Xn5JLr-fXyxPL5NCUEkSm2egVlRQ4MxyzfJMF0RBmfMcqlLHUhLFhZKqEtYKVVZcQlFkTGtGeK74CXo7-_be3Y0QBtPWoYCmsR24MRhKaK6FVoo9BmWMUsJlRN_8g27d6Lv4kImiggtNeKTUTBXeheChMr2vW-v3ETJTXmZrpljMFIuZ8jJ_8jK7KH310GBctVAehH8DisDHGbivG9g_2thcXH2aqqhPZn0dBtgd9Nb_NDIOV5jbb-fm7EpfL7_KzNxG_vXMV9YZu_Z1MDc_onMWP08mc8b-SzCVxQH_BlVDw4E</recordid><startdate>201206</startdate><enddate>201206</enddate><creator>Hillyer, J. F</creator><creator>Estévez‐Lao, T. Y</creator><creator>Funkhouser, L. J</creator><creator>Aluoch, V. A</creator><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>C1K</scope><scope>F1W</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope></search><sort><creationdate>201206</creationdate><title>Anopheles gambiae corazonin: gene structure, expression and effect on mosquito heart physiology</title><author>Hillyer, J. F ; Estévez‐Lao, T. Y ; Funkhouser, L. J ; Aluoch, V. A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5160-a74e8b151e32a392749c08ed737efd908e60835868f5aa58df36ecc4299203783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>alternative splicing</topic><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Anopheles - drug effects</topic><topic>Anopheles - genetics</topic><topic>Anopheles - physiology</topic><topic>Anopheles gambiae</topic><topic>aorta</topic><topic>corazonin</topic><topic>dorsal vessel</topic><topic>Gene Expression Regulation - drug effects</topic><topic>Gene Knockdown Techniques</topic><topic>genes</topic><topic>haemolymph</topic><topic>heart</topic><topic>Heart - drug effects</topic><topic>Heart - physiology</topic><topic>hemolymph</topic><topic>Insect Proteins - chemistry</topic><topic>Insect Proteins - genetics</topic><topic>Insect Proteins - metabolism</topic><topic>Insect Proteins - pharmacology</topic><topic>larvae</topic><topic>messenger RNA</topic><topic>Molecular Sequence Data</topic><topic>mosquito</topic><topic>neurohormones</topic><topic>neuropeptide</topic><topic>Neuropeptides - chemistry</topic><topic>Neuropeptides - genetics</topic><topic>Neuropeptides - metabolism</topic><topic>Neuropeptides - pharmacology</topic><topic>Periplaneta americana</topic><topic>pupae</topic><topic>Receptors, Neuropeptide - genetics</topic><topic>RNA interference</topic><topic>RNA Interference - drug effects</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Transcription, Genetic - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hillyer, J. F</creatorcontrib><creatorcontrib>Estévez‐Lao, T. Y</creatorcontrib><creatorcontrib>Funkhouser, L. J</creatorcontrib><creatorcontrib>Aluoch, V. A</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Insect molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hillyer, J. F</au><au>Estévez‐Lao, T. Y</au><au>Funkhouser, L. J</au><au>Aluoch, V. A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anopheles gambiae corazonin: gene structure, expression and effect on mosquito heart physiology</atitle><jtitle>Insect molecular biology</jtitle><addtitle>Insect Mol Biol</addtitle><date>2012-06</date><risdate>2012</risdate><volume>21</volume><issue>3</issue><spage>343</spage><epage>355</epage><pages>343-355</pages><issn>0962-1075</issn><eissn>1365-2583</eissn><abstract>Haemolymph flow in mosquitoes is primarily driven by the contraction of a dorsal vessel that is subdivided into an abdominal heart and a thoracic aorta. The factors that regulate mosquito heart contractions are not understood, but in other insects heart physiology is partially controlled by several neurohormones. One of these is corazonin, a neuropeptide initially discovered because of its cardioacceleratory activity in the cockroach Periplaneta americana. In the present study, we describe the corazonin gene and transcript structure in the mosquito Anopheles gambiae, characterize its developmental expression, and test its role in modulating heart physiology. We show that the A. gambiae corazonin gene encodes the most common form of the corazonin peptide ([Arg7]‐corazonin) and that it is alternatively spliced, with the only difference between the transcripts occurring in the 5′ untranslated region. Analysis of the developmental expression of corazonin and the corazonin receptor revealed that transcription of both follows a bimodal distribution, with highest mRNA levels in 2nd instar larvae and during the pupa to adult transition. Finally, experiments where mosquitoes were injected with various doses of corazonin and experiments where the transcription of corazonin and the corazonin receptor were reduced by RNA interference failed to detect a significant role for this neuropeptide in modulating mosquito heart physiology.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>22404523</pmid><doi>10.1111/j.1365-2583.2012.01140.x</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0962-1075 |
ispartof | Insect molecular biology, 2012-06, Vol.21 (3), p.343-355 |
issn | 0962-1075 1365-2583 |
language | eng |
recordid | cdi_proquest_miscellaneous_1017959882 |
source | MEDLINE; Wiley Journals |
subjects | alternative splicing Amino Acid Sequence Animals Anopheles - drug effects Anopheles - genetics Anopheles - physiology Anopheles gambiae aorta corazonin dorsal vessel Gene Expression Regulation - drug effects Gene Knockdown Techniques genes haemolymph heart Heart - drug effects Heart - physiology hemolymph Insect Proteins - chemistry Insect Proteins - genetics Insect Proteins - metabolism Insect Proteins - pharmacology larvae messenger RNA Molecular Sequence Data mosquito neurohormones neuropeptide Neuropeptides - chemistry Neuropeptides - genetics Neuropeptides - metabolism Neuropeptides - pharmacology Periplaneta americana pupae Receptors, Neuropeptide - genetics RNA interference RNA Interference - drug effects RNA, Messenger - genetics RNA, Messenger - metabolism Transcription, Genetic - drug effects |
title | Anopheles gambiae corazonin: gene structure, expression and effect on mosquito heart physiology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T08%3A55%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anopheles%20gambiae%20corazonin:%20gene%20structure,%20expression%20and%20effect%20on%20mosquito%20heart%20physiology&rft.jtitle=Insect%20molecular%20biology&rft.au=Hillyer,%20J.%20F&rft.date=2012-06&rft.volume=21&rft.issue=3&rft.spage=343&rft.epage=355&rft.pages=343-355&rft.issn=0962-1075&rft.eissn=1365-2583&rft_id=info:doi/10.1111/j.1365-2583.2012.01140.x&rft_dat=%3Cproquest_cross%3E1017959882%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1011535903&rft_id=info:pmid/22404523&rfr_iscdi=true |