Anopheles gambiae corazonin: gene structure, expression and effect on mosquito heart physiology

Haemolymph flow in mosquitoes is primarily driven by the contraction of a dorsal vessel that is subdivided into an abdominal heart and a thoracic aorta. The factors that regulate mosquito heart contractions are not understood, but in other insects heart physiology is partially controlled by several...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Insect molecular biology 2012-06, Vol.21 (3), p.343-355
Hauptverfasser: Hillyer, J. F, Estévez‐Lao, T. Y, Funkhouser, L. J, Aluoch, V. A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 355
container_issue 3
container_start_page 343
container_title Insect molecular biology
container_volume 21
creator Hillyer, J. F
Estévez‐Lao, T. Y
Funkhouser, L. J
Aluoch, V. A
description Haemolymph flow in mosquitoes is primarily driven by the contraction of a dorsal vessel that is subdivided into an abdominal heart and a thoracic aorta. The factors that regulate mosquito heart contractions are not understood, but in other insects heart physiology is partially controlled by several neurohormones. One of these is corazonin, a neuropeptide initially discovered because of its cardioacceleratory activity in the cockroach Periplaneta americana. In the present study, we describe the corazonin gene and transcript structure in the mosquito Anopheles gambiae, characterize its developmental expression, and test its role in modulating heart physiology. We show that the A. gambiae corazonin gene encodes the most common form of the corazonin peptide ([Arg7]‐corazonin) and that it is alternatively spliced, with the only difference between the transcripts occurring in the 5′ untranslated region. Analysis of the developmental expression of corazonin and the corazonin receptor revealed that transcription of both follows a bimodal distribution, with highest mRNA levels in 2nd instar larvae and during the pupa to adult transition. Finally, experiments where mosquitoes were injected with various doses of corazonin and experiments where the transcription of corazonin and the corazonin receptor were reduced by RNA interference failed to detect a significant role for this neuropeptide in modulating mosquito heart physiology.
doi_str_mv 10.1111/j.1365-2583.2012.01140.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1017959882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1017959882</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5160-a74e8b151e32a392749c08ed737efd908e60835868f5aa58df36ecc4299203783</originalsourceid><addsrcrecordid>eNqNks1u1DAUhS0EotPCK4AlNixI8E_s2EgsyoiWihYWtOrS8iQ3MxmSOLUTdYanxyFlFixQvfG1_J1z5XuMEKYkpXG936aUS5EwoXjKCGUpoTQj6e4JWhwunqIF0ZIllOTiCB2HsCWEKC31c3TEWEYywfgCmdPO9RtoIOC1bVe1BVw4b3-5ru4-4DV0gMPgx2IYPbzDsOs9hFC7DtuuxFBVUAw4nloX7sZ6cHgD1g-43-wj1Lj1_gV6VtkmwMuH_QTdnH2-Xn5JLr-fXyxPL5NCUEkSm2egVlRQ4MxyzfJMF0RBmfMcqlLHUhLFhZKqEtYKVVZcQlFkTGtGeK74CXo7-_be3Y0QBtPWoYCmsR24MRhKaK6FVoo9BmWMUsJlRN_8g27d6Lv4kImiggtNeKTUTBXeheChMr2vW-v3ETJTXmZrpljMFIuZ8jJ_8jK7KH310GBctVAehH8DisDHGbivG9g_2thcXH2aqqhPZn0dBtgd9Nb_NDIOV5jbb-fm7EpfL7_KzNxG_vXMV9YZu_Z1MDc_onMWP08mc8b-SzCVxQH_BlVDw4E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1011535903</pqid></control><display><type>article</type><title>Anopheles gambiae corazonin: gene structure, expression and effect on mosquito heart physiology</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Hillyer, J. F ; Estévez‐Lao, T. Y ; Funkhouser, L. J ; Aluoch, V. A</creator><creatorcontrib>Hillyer, J. F ; Estévez‐Lao, T. Y ; Funkhouser, L. J ; Aluoch, V. A</creatorcontrib><description>Haemolymph flow in mosquitoes is primarily driven by the contraction of a dorsal vessel that is subdivided into an abdominal heart and a thoracic aorta. The factors that regulate mosquito heart contractions are not understood, but in other insects heart physiology is partially controlled by several neurohormones. One of these is corazonin, a neuropeptide initially discovered because of its cardioacceleratory activity in the cockroach Periplaneta americana. In the present study, we describe the corazonin gene and transcript structure in the mosquito Anopheles gambiae, characterize its developmental expression, and test its role in modulating heart physiology. We show that the A. gambiae corazonin gene encodes the most common form of the corazonin peptide ([Arg7]‐corazonin) and that it is alternatively spliced, with the only difference between the transcripts occurring in the 5′ untranslated region. Analysis of the developmental expression of corazonin and the corazonin receptor revealed that transcription of both follows a bimodal distribution, with highest mRNA levels in 2nd instar larvae and during the pupa to adult transition. Finally, experiments where mosquitoes were injected with various doses of corazonin and experiments where the transcription of corazonin and the corazonin receptor were reduced by RNA interference failed to detect a significant role for this neuropeptide in modulating mosquito heart physiology.</description><identifier>ISSN: 0962-1075</identifier><identifier>EISSN: 1365-2583</identifier><identifier>DOI: 10.1111/j.1365-2583.2012.01140.x</identifier><identifier>PMID: 22404523</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>alternative splicing ; Amino Acid Sequence ; Animals ; Anopheles - drug effects ; Anopheles - genetics ; Anopheles - physiology ; Anopheles gambiae ; aorta ; corazonin ; dorsal vessel ; Gene Expression Regulation - drug effects ; Gene Knockdown Techniques ; genes ; haemolymph ; heart ; Heart - drug effects ; Heart - physiology ; hemolymph ; Insect Proteins - chemistry ; Insect Proteins - genetics ; Insect Proteins - metabolism ; Insect Proteins - pharmacology ; larvae ; messenger RNA ; Molecular Sequence Data ; mosquito ; neurohormones ; neuropeptide ; Neuropeptides - chemistry ; Neuropeptides - genetics ; Neuropeptides - metabolism ; Neuropeptides - pharmacology ; Periplaneta americana ; pupae ; Receptors, Neuropeptide - genetics ; RNA interference ; RNA Interference - drug effects ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Transcription, Genetic - drug effects</subject><ispartof>Insect molecular biology, 2012-06, Vol.21 (3), p.343-355</ispartof><rights>2012 The Authors. Insect Molecular Biology © 2012 The Royal Entomological Society</rights><rights>2012 The Authors. Insect Molecular Biology © 2012 The Royal Entomological Society.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5160-a74e8b151e32a392749c08ed737efd908e60835868f5aa58df36ecc4299203783</citedby><cites>FETCH-LOGICAL-c5160-a74e8b151e32a392749c08ed737efd908e60835868f5aa58df36ecc4299203783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-2583.2012.01140.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-2583.2012.01140.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22404523$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hillyer, J. F</creatorcontrib><creatorcontrib>Estévez‐Lao, T. Y</creatorcontrib><creatorcontrib>Funkhouser, L. J</creatorcontrib><creatorcontrib>Aluoch, V. A</creatorcontrib><title>Anopheles gambiae corazonin: gene structure, expression and effect on mosquito heart physiology</title><title>Insect molecular biology</title><addtitle>Insect Mol Biol</addtitle><description>Haemolymph flow in mosquitoes is primarily driven by the contraction of a dorsal vessel that is subdivided into an abdominal heart and a thoracic aorta. The factors that regulate mosquito heart contractions are not understood, but in other insects heart physiology is partially controlled by several neurohormones. One of these is corazonin, a neuropeptide initially discovered because of its cardioacceleratory activity in the cockroach Periplaneta americana. In the present study, we describe the corazonin gene and transcript structure in the mosquito Anopheles gambiae, characterize its developmental expression, and test its role in modulating heart physiology. We show that the A. gambiae corazonin gene encodes the most common form of the corazonin peptide ([Arg7]‐corazonin) and that it is alternatively spliced, with the only difference between the transcripts occurring in the 5′ untranslated region. Analysis of the developmental expression of corazonin and the corazonin receptor revealed that transcription of both follows a bimodal distribution, with highest mRNA levels in 2nd instar larvae and during the pupa to adult transition. Finally, experiments where mosquitoes were injected with various doses of corazonin and experiments where the transcription of corazonin and the corazonin receptor were reduced by RNA interference failed to detect a significant role for this neuropeptide in modulating mosquito heart physiology.</description><subject>alternative splicing</subject><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Anopheles - drug effects</subject><subject>Anopheles - genetics</subject><subject>Anopheles - physiology</subject><subject>Anopheles gambiae</subject><subject>aorta</subject><subject>corazonin</subject><subject>dorsal vessel</subject><subject>Gene Expression Regulation - drug effects</subject><subject>Gene Knockdown Techniques</subject><subject>genes</subject><subject>haemolymph</subject><subject>heart</subject><subject>Heart - drug effects</subject><subject>Heart - physiology</subject><subject>hemolymph</subject><subject>Insect Proteins - chemistry</subject><subject>Insect Proteins - genetics</subject><subject>Insect Proteins - metabolism</subject><subject>Insect Proteins - pharmacology</subject><subject>larvae</subject><subject>messenger RNA</subject><subject>Molecular Sequence Data</subject><subject>mosquito</subject><subject>neurohormones</subject><subject>neuropeptide</subject><subject>Neuropeptides - chemistry</subject><subject>Neuropeptides - genetics</subject><subject>Neuropeptides - metabolism</subject><subject>Neuropeptides - pharmacology</subject><subject>Periplaneta americana</subject><subject>pupae</subject><subject>Receptors, Neuropeptide - genetics</subject><subject>RNA interference</subject><subject>RNA Interference - drug effects</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Transcription, Genetic - drug effects</subject><issn>0962-1075</issn><issn>1365-2583</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNks1u1DAUhS0EotPCK4AlNixI8E_s2EgsyoiWihYWtOrS8iQ3MxmSOLUTdYanxyFlFixQvfG1_J1z5XuMEKYkpXG936aUS5EwoXjKCGUpoTQj6e4JWhwunqIF0ZIllOTiCB2HsCWEKC31c3TEWEYywfgCmdPO9RtoIOC1bVe1BVw4b3-5ru4-4DV0gMPgx2IYPbzDsOs9hFC7DtuuxFBVUAw4nloX7sZ6cHgD1g-43-wj1Lj1_gV6VtkmwMuH_QTdnH2-Xn5JLr-fXyxPL5NCUEkSm2egVlRQ4MxyzfJMF0RBmfMcqlLHUhLFhZKqEtYKVVZcQlFkTGtGeK74CXo7-_be3Y0QBtPWoYCmsR24MRhKaK6FVoo9BmWMUsJlRN_8g27d6Lv4kImiggtNeKTUTBXeheChMr2vW-v3ETJTXmZrpljMFIuZ8jJ_8jK7KH310GBctVAehH8DisDHGbivG9g_2thcXH2aqqhPZn0dBtgd9Nb_NDIOV5jbb-fm7EpfL7_KzNxG_vXMV9YZu_Z1MDc_onMWP08mc8b-SzCVxQH_BlVDw4E</recordid><startdate>201206</startdate><enddate>201206</enddate><creator>Hillyer, J. F</creator><creator>Estévez‐Lao, T. Y</creator><creator>Funkhouser, L. J</creator><creator>Aluoch, V. A</creator><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>C1K</scope><scope>F1W</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope></search><sort><creationdate>201206</creationdate><title>Anopheles gambiae corazonin: gene structure, expression and effect on mosquito heart physiology</title><author>Hillyer, J. F ; Estévez‐Lao, T. Y ; Funkhouser, L. J ; Aluoch, V. A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5160-a74e8b151e32a392749c08ed737efd908e60835868f5aa58df36ecc4299203783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>alternative splicing</topic><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Anopheles - drug effects</topic><topic>Anopheles - genetics</topic><topic>Anopheles - physiology</topic><topic>Anopheles gambiae</topic><topic>aorta</topic><topic>corazonin</topic><topic>dorsal vessel</topic><topic>Gene Expression Regulation - drug effects</topic><topic>Gene Knockdown Techniques</topic><topic>genes</topic><topic>haemolymph</topic><topic>heart</topic><topic>Heart - drug effects</topic><topic>Heart - physiology</topic><topic>hemolymph</topic><topic>Insect Proteins - chemistry</topic><topic>Insect Proteins - genetics</topic><topic>Insect Proteins - metabolism</topic><topic>Insect Proteins - pharmacology</topic><topic>larvae</topic><topic>messenger RNA</topic><topic>Molecular Sequence Data</topic><topic>mosquito</topic><topic>neurohormones</topic><topic>neuropeptide</topic><topic>Neuropeptides - chemistry</topic><topic>Neuropeptides - genetics</topic><topic>Neuropeptides - metabolism</topic><topic>Neuropeptides - pharmacology</topic><topic>Periplaneta americana</topic><topic>pupae</topic><topic>Receptors, Neuropeptide - genetics</topic><topic>RNA interference</topic><topic>RNA Interference - drug effects</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Transcription, Genetic - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hillyer, J. F</creatorcontrib><creatorcontrib>Estévez‐Lao, T. Y</creatorcontrib><creatorcontrib>Funkhouser, L. J</creatorcontrib><creatorcontrib>Aluoch, V. A</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Insect molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hillyer, J. F</au><au>Estévez‐Lao, T. Y</au><au>Funkhouser, L. J</au><au>Aluoch, V. A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anopheles gambiae corazonin: gene structure, expression and effect on mosquito heart physiology</atitle><jtitle>Insect molecular biology</jtitle><addtitle>Insect Mol Biol</addtitle><date>2012-06</date><risdate>2012</risdate><volume>21</volume><issue>3</issue><spage>343</spage><epage>355</epage><pages>343-355</pages><issn>0962-1075</issn><eissn>1365-2583</eissn><abstract>Haemolymph flow in mosquitoes is primarily driven by the contraction of a dorsal vessel that is subdivided into an abdominal heart and a thoracic aorta. The factors that regulate mosquito heart contractions are not understood, but in other insects heart physiology is partially controlled by several neurohormones. One of these is corazonin, a neuropeptide initially discovered because of its cardioacceleratory activity in the cockroach Periplaneta americana. In the present study, we describe the corazonin gene and transcript structure in the mosquito Anopheles gambiae, characterize its developmental expression, and test its role in modulating heart physiology. We show that the A. gambiae corazonin gene encodes the most common form of the corazonin peptide ([Arg7]‐corazonin) and that it is alternatively spliced, with the only difference between the transcripts occurring in the 5′ untranslated region. Analysis of the developmental expression of corazonin and the corazonin receptor revealed that transcription of both follows a bimodal distribution, with highest mRNA levels in 2nd instar larvae and during the pupa to adult transition. Finally, experiments where mosquitoes were injected with various doses of corazonin and experiments where the transcription of corazonin and the corazonin receptor were reduced by RNA interference failed to detect a significant role for this neuropeptide in modulating mosquito heart physiology.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>22404523</pmid><doi>10.1111/j.1365-2583.2012.01140.x</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0962-1075
ispartof Insect molecular biology, 2012-06, Vol.21 (3), p.343-355
issn 0962-1075
1365-2583
language eng
recordid cdi_proquest_miscellaneous_1017959882
source MEDLINE; Wiley Journals
subjects alternative splicing
Amino Acid Sequence
Animals
Anopheles - drug effects
Anopheles - genetics
Anopheles - physiology
Anopheles gambiae
aorta
corazonin
dorsal vessel
Gene Expression Regulation - drug effects
Gene Knockdown Techniques
genes
haemolymph
heart
Heart - drug effects
Heart - physiology
hemolymph
Insect Proteins - chemistry
Insect Proteins - genetics
Insect Proteins - metabolism
Insect Proteins - pharmacology
larvae
messenger RNA
Molecular Sequence Data
mosquito
neurohormones
neuropeptide
Neuropeptides - chemistry
Neuropeptides - genetics
Neuropeptides - metabolism
Neuropeptides - pharmacology
Periplaneta americana
pupae
Receptors, Neuropeptide - genetics
RNA interference
RNA Interference - drug effects
RNA, Messenger - genetics
RNA, Messenger - metabolism
Transcription, Genetic - drug effects
title Anopheles gambiae corazonin: gene structure, expression and effect on mosquito heart physiology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T08%3A55%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anopheles%20gambiae%20corazonin:%20gene%20structure,%20expression%20and%20effect%20on%20mosquito%20heart%20physiology&rft.jtitle=Insect%20molecular%20biology&rft.au=Hillyer,%20J.%20F&rft.date=2012-06&rft.volume=21&rft.issue=3&rft.spage=343&rft.epage=355&rft.pages=343-355&rft.issn=0962-1075&rft.eissn=1365-2583&rft_id=info:doi/10.1111/j.1365-2583.2012.01140.x&rft_dat=%3Cproquest_cross%3E1017959882%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1011535903&rft_id=info:pmid/22404523&rfr_iscdi=true