Anopheles gambiae corazonin: gene structure, expression and effect on mosquito heart physiology

Haemolymph flow in mosquitoes is primarily driven by the contraction of a dorsal vessel that is subdivided into an abdominal heart and a thoracic aorta. The factors that regulate mosquito heart contractions are not understood, but in other insects heart physiology is partially controlled by several...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Insect molecular biology 2012-06, Vol.21 (3), p.343-355
Hauptverfasser: Hillyer, J. F, Estévez‐Lao, T. Y, Funkhouser, L. J, Aluoch, V. A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Haemolymph flow in mosquitoes is primarily driven by the contraction of a dorsal vessel that is subdivided into an abdominal heart and a thoracic aorta. The factors that regulate mosquito heart contractions are not understood, but in other insects heart physiology is partially controlled by several neurohormones. One of these is corazonin, a neuropeptide initially discovered because of its cardioacceleratory activity in the cockroach Periplaneta americana. In the present study, we describe the corazonin gene and transcript structure in the mosquito Anopheles gambiae, characterize its developmental expression, and test its role in modulating heart physiology. We show that the A. gambiae corazonin gene encodes the most common form of the corazonin peptide ([Arg7]‐corazonin) and that it is alternatively spliced, with the only difference between the transcripts occurring in the 5′ untranslated region. Analysis of the developmental expression of corazonin and the corazonin receptor revealed that transcription of both follows a bimodal distribution, with highest mRNA levels in 2nd instar larvae and during the pupa to adult transition. Finally, experiments where mosquitoes were injected with various doses of corazonin and experiments where the transcription of corazonin and the corazonin receptor were reduced by RNA interference failed to detect a significant role for this neuropeptide in modulating mosquito heart physiology.
ISSN:0962-1075
1365-2583
DOI:10.1111/j.1365-2583.2012.01140.x