Potential Role of the Amelogenin N-Terminus in the Regulation of Calcium Phosphate Formation in vitro

N-terminal and C-terminal (CT) domains of amelogenin have been shown to be essential for proper enamel formation. Recent studies have also suggested that although the C-terminus plays an apparent role in protein-mineral interactions, other amelogenin structural domains are involved. The objective wa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cells, tissues, organs tissues, organs, 2011-08, Vol.194 (2-4), p.188-193
Hauptverfasser: Le Norcy, E., Kwak, S.-Y., Wiedemann-Bidlack, F.B., Beniash, E., Yamakoshi, Y., Simmer, J.P., Margolis, H.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:N-terminal and C-terminal (CT) domains of amelogenin have been shown to be essential for proper enamel formation. Recent studies have also suggested that although the C-terminus plays an apparent role in protein-mineral interactions, other amelogenin structural domains are involved. The objective was to explore the role of the amelogenin N-terminus in the regulation of calcium phosphate formation in vitro. Spontaneous mineralization studies were carried out using the phosphorylated (+P) and nonphosphorylated (–P) N-terminus of the leucine-rich amelogenin peptide (LRAP) that lacks the hydrophilic CT domain. Mineralization progress was monitored via changes in solution pH. Mineral phases formed were characterized using TEM, selected area electron diffraction, and FT-IR. In controls, amorphous calcium phosphate was initially formed and subsequently transformed to randomly oriented hydroxyapatite (HA) plate-like crystals. In contrast to the control, LRAP(+P)-CT stabilized ACP formation for >1 day, while LRAP(–P)-CT accelerated the transformation of ACP to HA but had little effect on crystal shape or orientation. In conclusion, the N-terminal domain found in LRAP, as in amelogenins, appears to have the capacity to interact with forming calcium phosphate mineral phases. Results suggest that the N-terminal domain of amelogenin may play a direct role in early stages of enamel formation.
ISSN:1422-6405
1422-6421
DOI:10.1159/000324827