Prolonging the expression duration of ultrasound-mediated gene transfection using PEI nanoparticles
Ultrasound (US) irradiation has been found to facilitate the inward transport of genetic materials across cell membranes (sonoporation). However, its transfection efficiency is generally low, and the expression duration of transfected gene is short. Polyethylenimine (PEI), a cationic polymer, has be...
Gespeichert in:
Veröffentlicht in: | Journal of controlled release 2012-05, Vol.160 (1), p.64-71 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ultrasound (US) irradiation has been found to facilitate the inward transport of genetic materials across cell membranes (sonoporation). However, its transfection efficiency is generally low, and the expression duration of transfected gene is short. Polyethylenimine (PEI), a cationic polymer, has been shown to aggregate plasmid DNA and facilitate its internalization. The purpose of this study is to determine whether PEI can also prolong the expression duration after US-mediated transfection. A mixture of pCMViLUC and 22-kDa linear PEI was transfected to cultured cells or mouse muscle by exposure to 1-MHz pulsed US. The duration of expression was assessed periodically following US treatment. As expected, strong expression of luciferase could be found 30days after the treatment of DNA–PEI complex with US exposure, both in vitro and in vivo. However, without US, only very low transfection level could be obtained in vivo. The DNA/PEI complex showed protective effect against digestion of DNase I enzymes as compared with groups without PEI or to which PEI was added following the mixing of plasmid DNA with DNase I. PEI enhanced the US transfection efficiency by increasing both the intracellular uptake of plasmid DNA and the percentage of transfected cells. Most of the DNA uptake occurred at 3h after US exposure, suggesting that endocytosis took place. Moreover, the PEI-facilitated US gene transfection depended on the ratio of PEI and DNA (N/P ratio), which was different for in-vitro and in-vivo conditions. This system could be applied in future human gene therapies.
[Display omitted] |
---|---|
ISSN: | 0168-3659 1873-4995 |
DOI: | 10.1016/j.jconrel.2012.03.007 |