Apoptosis-related gene transcription in human A549 lung cancer cells via A(3) adenosine receptor

Extracellular adenosine induces apoptosis in a variety of cancer cells via diverse signaling pathways. The present study investigated the mechanism underlying adenosine-induced apoptosis in A549 human lung cancer cells. MTT assay, TUNEL staining, flow cytometry using propidium iodide and annexin V-F...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellular physiology and biochemistry 2012, Vol.29 (5-6), p.687-696
Hauptverfasser: Kamiya, Hitomi, Kanno, Takeshi, Fujita, Yumiko, Gotoh, Akinobu, Nakano, Takashi, Nishizaki, Tomoyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Extracellular adenosine induces apoptosis in a variety of cancer cells via diverse signaling pathways. The present study investigated the mechanism underlying adenosine-induced apoptosis in A549 human lung cancer cells. MTT assay, TUNEL staining, flow cytometry using propidium iodide and annexin V-FITC, real-time RTPCR, Western blotting, monitoring of mitochondrial membrane potentials, and assay of caspase-3, -8, and -9 activities were carried out in A549 cells, and the siRNA to silence the A(3) adenosine receptor-targeted gene was constructed. Extracellular adenosine induces A549 cell apoptosis in a concentration (0.01-10 mM)-dependent manner, and the effect was inhibited by the A3 adenosine receptor inhibitor MRS1191 or knocking-down A(3) adenosine receptor. Like adenosine, the A(3) adenosine receptor agonist 2-Cl-IB-MECA also induced A549 cell apoptosis. Adenosine increased expression of mRNAs for Puma, Bax, and Bad, disrupted mitochondrial membrane potentials, and activated caspase-3 and -9 in A549 cells, and those adenosine effects were also suppressed by knocking-down A3 adenosine receptor. Adenosine induces A549 cell apoptosis by upregulating expression of Bax, Bad, and Puma, to disrupt mitochondrial membrane potentials and to activate caspase-9 followed by the effector caspase-3, via A(3) adenosine receptor.
ISSN:1421-9778
DOI:10.1159/000312589