Acyclic cucurbit[n]uril molecular containers enhance the solubility and bioactivity of poorly soluble pharmaceuticals

The solubility characteristics of 40–70% of new drug candidates are so poor that they cannot be formulated on their own, so new methods for increasing drug solubility are highly prized. Here, we describe a new class of general-purpose solubilizing agents—acyclic cucurbituril-type containers—which in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature chemistry 2012-06, Vol.4 (6), p.503-510
Hauptverfasser: Ma, Da, Hettiarachchi, Gaya, Nguyen, Duc, Zhang, Ben, Wittenberg, James B., Zavalij, Peter Y., Briken, Volker, Isaacs, Lyle
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The solubility characteristics of 40–70% of new drug candidates are so poor that they cannot be formulated on their own, so new methods for increasing drug solubility are highly prized. Here, we describe a new class of general-purpose solubilizing agents—acyclic cucurbituril-type containers—which increase the solubility of ten insoluble drugs by a factor of between 23 and 2,750 by forming container–drug complexes. The containers exhibit low in vitro toxicity in human liver, kidney and monocyte cell lines, and outbred Swiss Webster mice tolerate high doses of the container without sickness or weight loss. Paclitaxel solubilized by the acyclic cucurbituril-type containers kills cervical and ovarian cancer cells more efficiently than paclitaxel alone. The acyclic cucurbituril-type containers preferentially bind cationic and aromatic drugs, but also solubilize neutral drugs such as paclitaxel, and represent an attractive extension of cyclodextrin-based technology for drug solubilization and delivery. Acyclic cucurbituril-type molecular containers have been found to increase the solubility of insoluble pharmaceutical agents in water by up to 2,750-fold. In vitro and in vivo toxicology studies suggest that the containers are well tolerated, and paclitaxel solubilized in this manner efficiently kills HeLa and SK-OV-3 cancer cells.
ISSN:1755-4330
1755-4349
DOI:10.1038/nchem.1326