Single-Atom Ligand Changes Affect Breathing in an Extended Metal–Organic Framework

2-Phenylpyridine-5,4′-dicarboxylic acid (1, dcppy), a derivative of 4,4′-biphenyldicarboxylic (2, bpdc) was used as the organic linking component for several metal–organic frameworks (MOFs). The pyridine component of 1 does not interfere with the solvothermal synthetic procedure, and hence both 1 an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inorganic chemistry 2012-05, Vol.51 (10), p.5671-5676
Hauptverfasser: Dau, Phuong V, Kim, Min, Garibay, Sergio J, Münch, Frédéric H. L, Moore, Curtis E, Cohen, Seth M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:2-Phenylpyridine-5,4′-dicarboxylic acid (1, dcppy), a derivative of 4,4′-biphenyldicarboxylic (2, bpdc) was used as the organic linking component for several metal–organic frameworks (MOFs). The pyridine component of 1 does not interfere with the solvothermal synthetic procedure, and hence both 1 and 2 form similar isoreticular MOFs. Zr4+-based UiO-67-dcppy, Al3+-based DUT-5-dcppy, Zn2+-based DMOF-1-dcppy, and interpenetrated Zn2+-based BMOF-1-dcppy were readily synthesized from 1. Similarly, isostructural frameworks from 2 were prepared (UiO-67, DUT-5, DMOF-1-bpdc, and interpenetrated BMOF-1-bpdc). The structures and physical properties of these frameworks were characterized by powder X-ray diffraction (PXRD), single X-ray diffraction (XRD), thermogravimetric analysis (TGA), and gas sorption analysis. Generally, frameworks prepared from 1 or 2 displayed similar properties; however, gas sorption data showed that BMOF-1-dcppy displayed a very large hysteresis with N2 and CO2 suggestive of possible framework flexibility. In contrast, the analogous framework prepared from 2 (BMOF-1-bpdc) showed low uptake of N2 and CO2. The substantial difference in the gas sorption behavior of these MOFs is attributed to the pyridine nature of 1 that results in weakened π–π interactions between the interpenetrated nets.
ISSN:0020-1669
1520-510X
DOI:10.1021/ic202683s