Detection of the electrocardiogram fiducial points in the phase space using the euclidian distance measure
Abstract The paper proposes a phase-space based algorithm applying the Euclidian distance measure enabling detection of heartbeats and characteristic (fiducial) points from a single-lead electrocardiogram (ECG) signal. It extends the QRS detection in the phase space by detecting the P and T fiducial...
Gespeichert in:
Veröffentlicht in: | Medical engineering & physics 2012-05, Vol.34 (4), p.524-529 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract The paper proposes a phase-space based algorithm applying the Euclidian distance measure enabling detection of heartbeats and characteristic (fiducial) points from a single-lead electrocardiogram (ECG) signal. It extends the QRS detection in the phase space by detecting the P and T fiducial points. The algorithm is derived by reconstructing the ECG signals in a two-dimensional (2D) phase space according to the delay method and utilizes geometrical properties of the reconstructed phase portrait of the signal in the phase space for the heartbeat and fiducial-point detection. It uses adaptive thresholding and the Euclidian distance measure between the signal points in the phase portrait as an alternative to the phase-portrait area calculation (Lee et al., 2002 [1] ). It was verified with the QT Database (2011; [2] ) and its performance was assessed using sensitivity (Se) and the positive predictive value (PPV). Results for the proposed algorithm are 99.06%, 99.75% and 99.66% for Se and 94.87%, 99.75% and 99.66% for PPV for the P points, heartbeats and T points, respectively. |
---|---|
ISSN: | 1350-4533 1873-4030 |
DOI: | 10.1016/j.medengphy.2012.01.005 |