Review: Personalized mice: modelling the molecular heterogeneity of medulloblastoma

Medulloblastoma, the most common malignant paediatric brain tumour, is thought to arise from mutations in progenitors or stem cells in the cerebellum. Recent molecular analyses have highlighted the heterogeneity of these tumours, and demonstrated that they can be classified into at least four major...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuropathology and applied neurobiology 2012-06, Vol.38 (3), p.228-240
Hauptverfasser: MARKANT, S. L, WECHSLER-REYA, R. J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Medulloblastoma, the most common malignant paediatric brain tumour, is thought to arise from mutations in progenitors or stem cells in the cerebellum. Recent molecular analyses have highlighted the heterogeneity of these tumours, and demonstrated that they can be classified into at least four major subtypes that differ in terms of gene expression, genomic gains and losses, epidemiology and patient outcome. Along with analysis of human tumours, a variety of animal models of medulloblastoma have been developed using transgenic and knockout technology as well as somatic gene delivery. These models have provided valuable insight into the origins of the disease and the signalling pathways that control tumour growth. But the degree to which current models recapitulate the heterogeneity of the human disease remains unclear. Here we review the recent literature on the genomics of medulloblastoma and discuss the relationship of mouse models to the subtypes of the disease. Judicious use of existing models, and generation of additional models for poorly studied subtypes of medulloblastoma, will increase our understanding of tumour biology and allow evaluation of novel approaches to treatment of the disease.
ISSN:0305-1846
1365-2990
DOI:10.1111/j.1365-2990.2011.01235.x