The inflow of sensory information for the control of standing is graded and bidirectional

The control of upright standing is accomplished through the integration of different sources of sensory information and by providing an appropriate motor program to control both expected and unexpected perturbations imposed on the system. However, the dynamic characteristics of postural sway and its...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental brain research 2012-04, Vol.218 (1), p.111-118
Hauptverfasser: Tahayori, Behdad, Port, Nicholas L., Koceja, David M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The control of upright standing is accomplished through the integration of different sources of sensory information and by providing an appropriate motor program to control both expected and unexpected perturbations imposed on the system. However, the dynamic characteristics of postural sway and its interplay with the regulation of Ia sensory information within the spinal cord are largely unknown. Here, using a stochastic technique for analyzing the dynamics of upright standing, we demonstrate that the changes in the dynamics of postural sway were accompanied by modulation of the soleus H-reflex during quiet standing. While the causality of this relation was not established, the results showed that these changes were independent of the sway of the center of pressure and were bidirectional and purposeful. With this novel perspective, the appropriate reflex gain, which is important for balance control, can be predicted from the dynamic characteristics of postural sway. Our current findings provide the first human behavioral evidence to suggest the contribution of the spinal cord in fulfilling the desired motor programming of a complex task. This contribution is, by conventional guess, carried out through interneuronal adjustments, which are under the control of different brain areas.
ISSN:0014-4819
1432-1106
DOI:10.1007/s00221-012-3010-2