Quantitative proteomics and metabolomics approaches to demonstrate N-acetyl-d-glucosamine inducible amino acid deprivation response as morphological switch in Candida albicans

► We studied GlcNAc induced morphogenesis in C. albicans by 2-DE and metabolomics approaches. ► Intracellular amino acid pool goes down and amino acid biosynthesis proteins are upregulated. ► GCN4 and GCN2 genes involved in GCN response are activated in presence of GlcNAc. ► Inactivation of these ge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fungal genetics and biology 2012-05, Vol.49 (5), p.369-378
Hauptverfasser: Kamthan, Mohan, Mukhopadhyay, Gauranga, Chakraborty, Niranjan, Chakraborty, Subhra, Datta, Asis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:► We studied GlcNAc induced morphogenesis in C. albicans by 2-DE and metabolomics approaches. ► Intracellular amino acid pool goes down and amino acid biosynthesis proteins are upregulated. ► GCN4 and GCN2 genes involved in GCN response are activated in presence of GlcNAc. ► Inactivation of these genes blocks the GlcNAc induced morphogenesis. ► Amino acid starvation is the morphological switch in presence of GlcNAc. Candida albicans is a life threatening polymorphic pathogen for immunocompromised patients, causing superficial as well as invasive systemic diseases. The mucosal membranes of the host, which are the primary sites of its infection, are rich in amino sugars like N-acetylglucosamine (GlcNAc). GlcNAc is also one of the potent inducers of morphological transition, an important pathogenic trait of C. albicans. We thus performed proteomic analysis on total soluble proteins to identify the molecules involved in this response. Proteomic analysis using 2-DE demonstrated reproducible upregulation of 36 spots from a total of 585 matched spots. Mass spectroscopy (MS/MS) analyses of upregulated proteins revealed that carbohydrate and amino acid metabolism were the most prominent functional classes. Metabolite profiling using GC–MS allowed a quantitative comparison of 58 metabolites in GlcNAc or glucose grown cells. We observed a significant decrease in the intracellular amino acid pool of GlcNAc grown cells. Moreover, GlcNAc induces both bZIP transcription factor (GCN4) and eIF2α kinase (GCN2) which are responsible for the activation of general amino acid control response in C. albicans. Inactivation of these genes blocks GlcNAc induced morphogenesis. Altogether these results suggest that amino acid starvation is the morphogenetic signal in presence of GlcNAc in C. albicans.
ISSN:1087-1845
1096-0937
DOI:10.1016/j.fgb.2012.02.006