Topological repulsion between domain walls in magnetic nanowires leading to the formation of bound states

Head-to-head and tail-to-tail magnetic domain walls in nanowires behave as free magnetic monopoles carrying a single magnetic charge. Since adjacent walls always carry opposite charges, they attract one another. In most cases this long-range attractive interaction leads to annihilation of the two do...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2012-05, Vol.3 (1), p.810-810, Article 810
Hauptverfasser: Thomas, Luc, Hayashi, Masamitsu, Moriya, Rai, Rettner, Charles, Parkin, Stuart
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Head-to-head and tail-to-tail magnetic domain walls in nanowires behave as free magnetic monopoles carrying a single magnetic charge. Since adjacent walls always carry opposite charges, they attract one another. In most cases this long-range attractive interaction leads to annihilation of the two domain walls. Here, we show that, in some cases, a short-range repulsive interaction suppresses annihilation of the walls, even though the lowest energy state is without any domain walls. This repulsive interaction is a consequence of topological edge defects that have the same winding number. We show that the competition between the attractive and repulsive interactions leads to the formation of metastable bound states made up of two or more domain walls. We have created bound states formed from up to eight domain walls, corresponding to the magnetization winding up over four complete 360° rotations. The manipulation of domain walls in magnetic nanodevices is a topic of increasing technological relevance. This study examines the interactions that occur between vortex domain walls in permalloy nanowires, and finds that bound states occur between domain walls with opposite magnetic charge.
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms1808