Use of fluorine-doped silicon oxide for temperature compensation of radio frequency surface acoustic wave devices
This paper investigates acoustic properties, including the temperature coefficient of elasticity (TCE), of fluorine-doped silicon oxide (SiOF) films and proposes the application of the films to the temperature compensation of RF SAW devices. From Fourier transform infrared spectroscopy (FT-IR), SiOF...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2012-01, Vol.59 (1), p.135-138 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 138 |
---|---|
container_issue | 1 |
container_start_page | 135 |
container_title | IEEE transactions on ultrasonics, ferroelectrics, and frequency control |
container_volume | 59 |
creator | Matsuda, S. Hara, M. Miura, M. Matsuda, T. Ueda, U. M. Satoh, Y. Hashimoto, K. |
description | This paper investigates acoustic properties, including the temperature coefficient of elasticity (TCE), of fluorine-doped silicon oxide (SiOF) films and proposes the application of the films to the temperature compensation of RF SAW devices. From Fourier transform infrared spectroscopy (FT-IR), SiOF films were expected to possess good TCE properties. We fabricated a series of SAW devices using the SiOF-overlay/Cu-grating/LiNbO 3 -substrate structure, and evaluated their performance. The experiments showed that the temperature coefficient of frequency (TCF) increases with the fluorine content r, as we expected from the FT-IR measurement. This means that the Si-O-Si atomic structure measurable by the FT-IR governs the TCE behavior of SiO 2 -based films even when the dopant is added. In comparison with pure SiO 2 with the film thickness h of 0.3 wavelengths (λ), TCF was improved by 7.7 ppm/°C without deterioration of the effective electromechanical coupling factor K2 when r = 3.8 atomic % and h = 0.28λ. Fluorine inclusion did not obviously influence the resonators' Q factors when r |
doi_str_mv | 10.1109/TUFFC.2012.2164 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1010901560</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6138735</ieee_id><sourcerecordid>919948165</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-eed23d2e9f4f3c173ecc22e1701186dd54663686109d77b7db5d1a96bbeec46a3</originalsourceid><addsrcrecordid>eNp90cFrFDEUBvAgil1bzx4ECYLoZbZ5mUkmOcriaqHQS_c8ZJIXSJmdbJOZav97M921ggdPCeSXj-R9hLwDtgZg-vJ2t91u1pwBX3OQzQuyAsFFpbQQL8mKKSWqmgE7I29yvmMMmkbz1-SMc65bzcSK3O8y0uipH-aYwoiViwd0NIch2DjS-Cs4pD4mOuH-gMlMc0JqY9mP2UxhIZ4m40KkPuH9jKN9pHlO3likxsY5T8HSn-YBqcOHYDFfkFfeDBnfntZzstt-u938qK5vvl9tvl5XtmFyqhAdrx1H7RtfW2hrtJZzhJYBKOmcaKSspZJlCq5t-9b1woHRsu8RbSNNfU4-H3MPKZZ35anbh2xxGMyI5VmdBq0bBVIU-eW_EsoENQMhWaEf_6F3cU5j-UfJU7owtqDLI7Ip5pzQd4cU9iY9lqRuqa17qq1bauuW2sqND6fYud-je_Z_eirg0wmYbM3gkxltyH-dEMCFVsW9P7qAiM_HEmrV1qL-DbvSqaA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>918909000</pqid></control><display><type>article</type><title>Use of fluorine-doped silicon oxide for temperature compensation of radio frequency surface acoustic wave devices</title><source>IEEE Electronic Library (IEL)</source><creator>Matsuda, S. ; Hara, M. ; Miura, M. ; Matsuda, T. ; Ueda, U. M. ; Satoh, Y. ; Hashimoto, K.</creator><creatorcontrib>Matsuda, S. ; Hara, M. ; Miura, M. ; Matsuda, T. ; Ueda, U. M. ; Satoh, Y. ; Hashimoto, K.</creatorcontrib><description>This paper investigates acoustic properties, including the temperature coefficient of elasticity (TCE), of fluorine-doped silicon oxide (SiOF) films and proposes the application of the films to the temperature compensation of RF SAW devices. From Fourier transform infrared spectroscopy (FT-IR), SiOF films were expected to possess good TCE properties. We fabricated a series of SAW devices using the SiOF-overlay/Cu-grating/LiNbO 3 -substrate structure, and evaluated their performance. The experiments showed that the temperature coefficient of frequency (TCF) increases with the fluorine content r, as we expected from the FT-IR measurement. This means that the Si-O-Si atomic structure measurable by the FT-IR governs the TCE behavior of SiO 2 -based films even when the dopant is added. In comparison with pure SiO 2 with the film thickness h of 0.3 wavelengths (λ), TCF was improved by 7.7 ppm/°C without deterioration of the effective electromechanical coupling factor K2 when r = 3.8 atomic % and h = 0.28λ. Fluorine inclusion did not obviously influence the resonators' Q factors when r <; 8.8 atomic %.</description><identifier>ISSN: 0885-3010</identifier><identifier>EISSN: 1525-8955</identifier><identifier>DOI: 10.1109/TUFFC.2012.2164</identifier><identifier>PMID: 22297905</identifier><identifier>CODEN: ITUCER</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Acoustic wave devices, piezoelectric and piezoresistive devices ; Acoustics ; Applied sciences ; Atomic measurements ; Atomic structure ; Coefficients ; Devices ; Educational institutions ; Electronics ; Exact sciences and technology ; Fluorine ; Fourier transforms ; Fundamental areas of phenomenology (including applications) ; Physics ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Silicon dioxide ; Silicon oxides ; Studies ; Surface acoustic wave devices ; Surface acoustic waves ; Temperature ; Temperature compensation ; Temperature measurement ; Transduction; acoustical devices for the generation and reproduction of sound</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2012-01, Vol.59 (1), p.135-138</ispartof><rights>2015 INIST-CNRS</rights><rights>2012 IEEE</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-eed23d2e9f4f3c173ecc22e1701186dd54663686109d77b7db5d1a96bbeec46a3</citedby><cites>FETCH-LOGICAL-c406t-eed23d2e9f4f3c173ecc22e1701186dd54663686109d77b7db5d1a96bbeec46a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6138735$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6138735$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25512598$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22297905$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Matsuda, S.</creatorcontrib><creatorcontrib>Hara, M.</creatorcontrib><creatorcontrib>Miura, M.</creatorcontrib><creatorcontrib>Matsuda, T.</creatorcontrib><creatorcontrib>Ueda, U. M.</creatorcontrib><creatorcontrib>Satoh, Y.</creatorcontrib><creatorcontrib>Hashimoto, K.</creatorcontrib><title>Use of fluorine-doped silicon oxide for temperature compensation of radio frequency surface acoustic wave devices</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>T-UFFC</addtitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><description>This paper investigates acoustic properties, including the temperature coefficient of elasticity (TCE), of fluorine-doped silicon oxide (SiOF) films and proposes the application of the films to the temperature compensation of RF SAW devices. From Fourier transform infrared spectroscopy (FT-IR), SiOF films were expected to possess good TCE properties. We fabricated a series of SAW devices using the SiOF-overlay/Cu-grating/LiNbO 3 -substrate structure, and evaluated their performance. The experiments showed that the temperature coefficient of frequency (TCF) increases with the fluorine content r, as we expected from the FT-IR measurement. This means that the Si-O-Si atomic structure measurable by the FT-IR governs the TCE behavior of SiO 2 -based films even when the dopant is added. In comparison with pure SiO 2 with the film thickness h of 0.3 wavelengths (λ), TCF was improved by 7.7 ppm/°C without deterioration of the effective electromechanical coupling factor K2 when r = 3.8 atomic % and h = 0.28λ. Fluorine inclusion did not obviously influence the resonators' Q factors when r <; 8.8 atomic %.</description><subject>Acoustic wave devices, piezoelectric and piezoresistive devices</subject><subject>Acoustics</subject><subject>Applied sciences</subject><subject>Atomic measurements</subject><subject>Atomic structure</subject><subject>Coefficients</subject><subject>Devices</subject><subject>Educational institutions</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Fluorine</subject><subject>Fourier transforms</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Silicon dioxide</subject><subject>Silicon oxides</subject><subject>Studies</subject><subject>Surface acoustic wave devices</subject><subject>Surface acoustic waves</subject><subject>Temperature</subject><subject>Temperature compensation</subject><subject>Temperature measurement</subject><subject>Transduction; acoustical devices for the generation and reproduction of sound</subject><issn>0885-3010</issn><issn>1525-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp90cFrFDEUBvAgil1bzx4ECYLoZbZ5mUkmOcriaqHQS_c8ZJIXSJmdbJOZav97M921ggdPCeSXj-R9hLwDtgZg-vJ2t91u1pwBX3OQzQuyAsFFpbQQL8mKKSWqmgE7I29yvmMMmkbz1-SMc65bzcSK3O8y0uipH-aYwoiViwd0NIch2DjS-Cs4pD4mOuH-gMlMc0JqY9mP2UxhIZ4m40KkPuH9jKN9pHlO3likxsY5T8HSn-YBqcOHYDFfkFfeDBnfntZzstt-u938qK5vvl9tvl5XtmFyqhAdrx1H7RtfW2hrtJZzhJYBKOmcaKSspZJlCq5t-9b1woHRsu8RbSNNfU4-H3MPKZZ35anbh2xxGMyI5VmdBq0bBVIU-eW_EsoENQMhWaEf_6F3cU5j-UfJU7owtqDLI7Ip5pzQd4cU9iY9lqRuqa17qq1bauuW2sqND6fYud-je_Z_eirg0wmYbM3gkxltyH-dEMCFVsW9P7qAiM_HEmrV1qL-DbvSqaA</recordid><startdate>201201</startdate><enddate>201201</enddate><creator>Matsuda, S.</creator><creator>Hara, M.</creator><creator>Miura, M.</creator><creator>Matsuda, T.</creator><creator>Ueda, U. M.</creator><creator>Satoh, Y.</creator><creator>Hashimoto, K.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>201201</creationdate><title>Use of fluorine-doped silicon oxide for temperature compensation of radio frequency surface acoustic wave devices</title><author>Matsuda, S. ; Hara, M. ; Miura, M. ; Matsuda, T. ; Ueda, U. M. ; Satoh, Y. ; Hashimoto, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-eed23d2e9f4f3c173ecc22e1701186dd54663686109d77b7db5d1a96bbeec46a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acoustic wave devices, piezoelectric and piezoresistive devices</topic><topic>Acoustics</topic><topic>Applied sciences</topic><topic>Atomic measurements</topic><topic>Atomic structure</topic><topic>Coefficients</topic><topic>Devices</topic><topic>Educational institutions</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Fluorine</topic><topic>Fourier transforms</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Silicon dioxide</topic><topic>Silicon oxides</topic><topic>Studies</topic><topic>Surface acoustic wave devices</topic><topic>Surface acoustic waves</topic><topic>Temperature</topic><topic>Temperature compensation</topic><topic>Temperature measurement</topic><topic>Transduction; acoustical devices for the generation and reproduction of sound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matsuda, S.</creatorcontrib><creatorcontrib>Hara, M.</creatorcontrib><creatorcontrib>Miura, M.</creatorcontrib><creatorcontrib>Matsuda, T.</creatorcontrib><creatorcontrib>Ueda, U. M.</creatorcontrib><creatorcontrib>Satoh, Y.</creatorcontrib><creatorcontrib>Hashimoto, K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Matsuda, S.</au><au>Hara, M.</au><au>Miura, M.</au><au>Matsuda, T.</au><au>Ueda, U. M.</au><au>Satoh, Y.</au><au>Hashimoto, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of fluorine-doped silicon oxide for temperature compensation of radio frequency surface acoustic wave devices</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><stitle>T-UFFC</stitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><date>2012-01</date><risdate>2012</risdate><volume>59</volume><issue>1</issue><spage>135</spage><epage>138</epage><pages>135-138</pages><issn>0885-3010</issn><eissn>1525-8955</eissn><coden>ITUCER</coden><abstract>This paper investigates acoustic properties, including the temperature coefficient of elasticity (TCE), of fluorine-doped silicon oxide (SiOF) films and proposes the application of the films to the temperature compensation of RF SAW devices. From Fourier transform infrared spectroscopy (FT-IR), SiOF films were expected to possess good TCE properties. We fabricated a series of SAW devices using the SiOF-overlay/Cu-grating/LiNbO 3 -substrate structure, and evaluated their performance. The experiments showed that the temperature coefficient of frequency (TCF) increases with the fluorine content r, as we expected from the FT-IR measurement. This means that the Si-O-Si atomic structure measurable by the FT-IR governs the TCE behavior of SiO 2 -based films even when the dopant is added. In comparison with pure SiO 2 with the film thickness h of 0.3 wavelengths (λ), TCF was improved by 7.7 ppm/°C without deterioration of the effective electromechanical coupling factor K2 when r = 3.8 atomic % and h = 0.28λ. Fluorine inclusion did not obviously influence the resonators' Q factors when r <; 8.8 atomic %.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>22297905</pmid><doi>10.1109/TUFFC.2012.2164</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-3010 |
ispartof | IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2012-01, Vol.59 (1), p.135-138 |
issn | 0885-3010 1525-8955 |
language | eng |
recordid | cdi_proquest_miscellaneous_1010901560 |
source | IEEE Electronic Library (IEL) |
subjects | Acoustic wave devices, piezoelectric and piezoresistive devices Acoustics Applied sciences Atomic measurements Atomic structure Coefficients Devices Educational institutions Electronics Exact sciences and technology Fluorine Fourier transforms Fundamental areas of phenomenology (including applications) Physics Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Silicon dioxide Silicon oxides Studies Surface acoustic wave devices Surface acoustic waves Temperature Temperature compensation Temperature measurement Transduction acoustical devices for the generation and reproduction of sound |
title | Use of fluorine-doped silicon oxide for temperature compensation of radio frequency surface acoustic wave devices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T16%3A14%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20fluorine-doped%20silicon%20oxide%20for%20temperature%20compensation%20of%20radio%20frequency%20surface%20acoustic%20wave%20devices&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=Matsuda,%20S.&rft.date=2012-01&rft.volume=59&rft.issue=1&rft.spage=135&rft.epage=138&rft.pages=135-138&rft.issn=0885-3010&rft.eissn=1525-8955&rft.coden=ITUCER&rft_id=info:doi/10.1109/TUFFC.2012.2164&rft_dat=%3Cproquest_RIE%3E919948165%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=918909000&rft_id=info:pmid/22297905&rft_ieee_id=6138735&rfr_iscdi=true |