Use of fluorine-doped silicon oxide for temperature compensation of radio frequency surface acoustic wave devices

This paper investigates acoustic properties, including the temperature coefficient of elasticity (TCE), of fluorine-doped silicon oxide (SiOF) films and proposes the application of the films to the temperature compensation of RF SAW devices. From Fourier transform infrared spectroscopy (FT-IR), SiOF...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2012-01, Vol.59 (1), p.135-138
Hauptverfasser: Matsuda, S., Hara, M., Miura, M., Matsuda, T., Ueda, U. M., Satoh, Y., Hashimoto, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 138
container_issue 1
container_start_page 135
container_title IEEE transactions on ultrasonics, ferroelectrics, and frequency control
container_volume 59
creator Matsuda, S.
Hara, M.
Miura, M.
Matsuda, T.
Ueda, U. M.
Satoh, Y.
Hashimoto, K.
description This paper investigates acoustic properties, including the temperature coefficient of elasticity (TCE), of fluorine-doped silicon oxide (SiOF) films and proposes the application of the films to the temperature compensation of RF SAW devices. From Fourier transform infrared spectroscopy (FT-IR), SiOF films were expected to possess good TCE properties. We fabricated a series of SAW devices using the SiOF-overlay/Cu-grating/LiNbO 3 -substrate structure, and evaluated their performance. The experiments showed that the temperature coefficient of frequency (TCF) increases with the fluorine content r, as we expected from the FT-IR measurement. This means that the Si-O-Si atomic structure measurable by the FT-IR governs the TCE behavior of SiO 2 -based films even when the dopant is added. In comparison with pure SiO 2 with the film thickness h of 0.3 wavelengths (λ), TCF was improved by 7.7 ppm/°C without deterioration of the effective electromechanical coupling factor K2 when r = 3.8 atomic % and h = 0.28λ. Fluorine inclusion did not obviously influence the resonators' Q factors when r
doi_str_mv 10.1109/TUFFC.2012.2164
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1010901560</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6138735</ieee_id><sourcerecordid>919948165</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-eed23d2e9f4f3c173ecc22e1701186dd54663686109d77b7db5d1a96bbeec46a3</originalsourceid><addsrcrecordid>eNp90cFrFDEUBvAgil1bzx4ECYLoZbZ5mUkmOcriaqHQS_c8ZJIXSJmdbJOZav97M921ggdPCeSXj-R9hLwDtgZg-vJ2t91u1pwBX3OQzQuyAsFFpbQQL8mKKSWqmgE7I29yvmMMmkbz1-SMc65bzcSK3O8y0uipH-aYwoiViwd0NIch2DjS-Cs4pD4mOuH-gMlMc0JqY9mP2UxhIZ4m40KkPuH9jKN9pHlO3likxsY5T8HSn-YBqcOHYDFfkFfeDBnfntZzstt-u938qK5vvl9tvl5XtmFyqhAdrx1H7RtfW2hrtJZzhJYBKOmcaKSspZJlCq5t-9b1woHRsu8RbSNNfU4-H3MPKZZ35anbh2xxGMyI5VmdBq0bBVIU-eW_EsoENQMhWaEf_6F3cU5j-UfJU7owtqDLI7Ip5pzQd4cU9iY9lqRuqa17qq1bauuW2sqND6fYud-je_Z_eirg0wmYbM3gkxltyH-dEMCFVsW9P7qAiM_HEmrV1qL-DbvSqaA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>918909000</pqid></control><display><type>article</type><title>Use of fluorine-doped silicon oxide for temperature compensation of radio frequency surface acoustic wave devices</title><source>IEEE Electronic Library (IEL)</source><creator>Matsuda, S. ; Hara, M. ; Miura, M. ; Matsuda, T. ; Ueda, U. M. ; Satoh, Y. ; Hashimoto, K.</creator><creatorcontrib>Matsuda, S. ; Hara, M. ; Miura, M. ; Matsuda, T. ; Ueda, U. M. ; Satoh, Y. ; Hashimoto, K.</creatorcontrib><description>This paper investigates acoustic properties, including the temperature coefficient of elasticity (TCE), of fluorine-doped silicon oxide (SiOF) films and proposes the application of the films to the temperature compensation of RF SAW devices. From Fourier transform infrared spectroscopy (FT-IR), SiOF films were expected to possess good TCE properties. We fabricated a series of SAW devices using the SiOF-overlay/Cu-grating/LiNbO 3 -substrate structure, and evaluated their performance. The experiments showed that the temperature coefficient of frequency (TCF) increases with the fluorine content r, as we expected from the FT-IR measurement. This means that the Si-O-Si atomic structure measurable by the FT-IR governs the TCE behavior of SiO 2 -based films even when the dopant is added. In comparison with pure SiO 2 with the film thickness h of 0.3 wavelengths (λ), TCF was improved by 7.7 ppm/°C without deterioration of the effective electromechanical coupling factor K2 when r = 3.8 atomic % and h = 0.28λ. Fluorine inclusion did not obviously influence the resonators' Q factors when r &lt;; 8.8 atomic %.</description><identifier>ISSN: 0885-3010</identifier><identifier>EISSN: 1525-8955</identifier><identifier>DOI: 10.1109/TUFFC.2012.2164</identifier><identifier>PMID: 22297905</identifier><identifier>CODEN: ITUCER</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Acoustic wave devices, piezoelectric and piezoresistive devices ; Acoustics ; Applied sciences ; Atomic measurements ; Atomic structure ; Coefficients ; Devices ; Educational institutions ; Electronics ; Exact sciences and technology ; Fluorine ; Fourier transforms ; Fundamental areas of phenomenology (including applications) ; Physics ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Silicon dioxide ; Silicon oxides ; Studies ; Surface acoustic wave devices ; Surface acoustic waves ; Temperature ; Temperature compensation ; Temperature measurement ; Transduction; acoustical devices for the generation and reproduction of sound</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2012-01, Vol.59 (1), p.135-138</ispartof><rights>2015 INIST-CNRS</rights><rights>2012 IEEE</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-eed23d2e9f4f3c173ecc22e1701186dd54663686109d77b7db5d1a96bbeec46a3</citedby><cites>FETCH-LOGICAL-c406t-eed23d2e9f4f3c173ecc22e1701186dd54663686109d77b7db5d1a96bbeec46a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6138735$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6138735$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25512598$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22297905$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Matsuda, S.</creatorcontrib><creatorcontrib>Hara, M.</creatorcontrib><creatorcontrib>Miura, M.</creatorcontrib><creatorcontrib>Matsuda, T.</creatorcontrib><creatorcontrib>Ueda, U. M.</creatorcontrib><creatorcontrib>Satoh, Y.</creatorcontrib><creatorcontrib>Hashimoto, K.</creatorcontrib><title>Use of fluorine-doped silicon oxide for temperature compensation of radio frequency surface acoustic wave devices</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>T-UFFC</addtitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><description>This paper investigates acoustic properties, including the temperature coefficient of elasticity (TCE), of fluorine-doped silicon oxide (SiOF) films and proposes the application of the films to the temperature compensation of RF SAW devices. From Fourier transform infrared spectroscopy (FT-IR), SiOF films were expected to possess good TCE properties. We fabricated a series of SAW devices using the SiOF-overlay/Cu-grating/LiNbO 3 -substrate structure, and evaluated their performance. The experiments showed that the temperature coefficient of frequency (TCF) increases with the fluorine content r, as we expected from the FT-IR measurement. This means that the Si-O-Si atomic structure measurable by the FT-IR governs the TCE behavior of SiO 2 -based films even when the dopant is added. In comparison with pure SiO 2 with the film thickness h of 0.3 wavelengths (λ), TCF was improved by 7.7 ppm/°C without deterioration of the effective electromechanical coupling factor K2 when r = 3.8 atomic % and h = 0.28λ. Fluorine inclusion did not obviously influence the resonators' Q factors when r &lt;; 8.8 atomic %.</description><subject>Acoustic wave devices, piezoelectric and piezoresistive devices</subject><subject>Acoustics</subject><subject>Applied sciences</subject><subject>Atomic measurements</subject><subject>Atomic structure</subject><subject>Coefficients</subject><subject>Devices</subject><subject>Educational institutions</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Fluorine</subject><subject>Fourier transforms</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Silicon dioxide</subject><subject>Silicon oxides</subject><subject>Studies</subject><subject>Surface acoustic wave devices</subject><subject>Surface acoustic waves</subject><subject>Temperature</subject><subject>Temperature compensation</subject><subject>Temperature measurement</subject><subject>Transduction; acoustical devices for the generation and reproduction of sound</subject><issn>0885-3010</issn><issn>1525-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp90cFrFDEUBvAgil1bzx4ECYLoZbZ5mUkmOcriaqHQS_c8ZJIXSJmdbJOZav97M921ggdPCeSXj-R9hLwDtgZg-vJ2t91u1pwBX3OQzQuyAsFFpbQQL8mKKSWqmgE7I29yvmMMmkbz1-SMc65bzcSK3O8y0uipH-aYwoiViwd0NIch2DjS-Cs4pD4mOuH-gMlMc0JqY9mP2UxhIZ4m40KkPuH9jKN9pHlO3likxsY5T8HSn-YBqcOHYDFfkFfeDBnfntZzstt-u938qK5vvl9tvl5XtmFyqhAdrx1H7RtfW2hrtJZzhJYBKOmcaKSspZJlCq5t-9b1woHRsu8RbSNNfU4-H3MPKZZ35anbh2xxGMyI5VmdBq0bBVIU-eW_EsoENQMhWaEf_6F3cU5j-UfJU7owtqDLI7Ip5pzQd4cU9iY9lqRuqa17qq1bauuW2sqND6fYud-je_Z_eirg0wmYbM3gkxltyH-dEMCFVsW9P7qAiM_HEmrV1qL-DbvSqaA</recordid><startdate>201201</startdate><enddate>201201</enddate><creator>Matsuda, S.</creator><creator>Hara, M.</creator><creator>Miura, M.</creator><creator>Matsuda, T.</creator><creator>Ueda, U. M.</creator><creator>Satoh, Y.</creator><creator>Hashimoto, K.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>201201</creationdate><title>Use of fluorine-doped silicon oxide for temperature compensation of radio frequency surface acoustic wave devices</title><author>Matsuda, S. ; Hara, M. ; Miura, M. ; Matsuda, T. ; Ueda, U. M. ; Satoh, Y. ; Hashimoto, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-eed23d2e9f4f3c173ecc22e1701186dd54663686109d77b7db5d1a96bbeec46a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acoustic wave devices, piezoelectric and piezoresistive devices</topic><topic>Acoustics</topic><topic>Applied sciences</topic><topic>Atomic measurements</topic><topic>Atomic structure</topic><topic>Coefficients</topic><topic>Devices</topic><topic>Educational institutions</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Fluorine</topic><topic>Fourier transforms</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Silicon dioxide</topic><topic>Silicon oxides</topic><topic>Studies</topic><topic>Surface acoustic wave devices</topic><topic>Surface acoustic waves</topic><topic>Temperature</topic><topic>Temperature compensation</topic><topic>Temperature measurement</topic><topic>Transduction; acoustical devices for the generation and reproduction of sound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matsuda, S.</creatorcontrib><creatorcontrib>Hara, M.</creatorcontrib><creatorcontrib>Miura, M.</creatorcontrib><creatorcontrib>Matsuda, T.</creatorcontrib><creatorcontrib>Ueda, U. M.</creatorcontrib><creatorcontrib>Satoh, Y.</creatorcontrib><creatorcontrib>Hashimoto, K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Matsuda, S.</au><au>Hara, M.</au><au>Miura, M.</au><au>Matsuda, T.</au><au>Ueda, U. M.</au><au>Satoh, Y.</au><au>Hashimoto, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of fluorine-doped silicon oxide for temperature compensation of radio frequency surface acoustic wave devices</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><stitle>T-UFFC</stitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><date>2012-01</date><risdate>2012</risdate><volume>59</volume><issue>1</issue><spage>135</spage><epage>138</epage><pages>135-138</pages><issn>0885-3010</issn><eissn>1525-8955</eissn><coden>ITUCER</coden><abstract>This paper investigates acoustic properties, including the temperature coefficient of elasticity (TCE), of fluorine-doped silicon oxide (SiOF) films and proposes the application of the films to the temperature compensation of RF SAW devices. From Fourier transform infrared spectroscopy (FT-IR), SiOF films were expected to possess good TCE properties. We fabricated a series of SAW devices using the SiOF-overlay/Cu-grating/LiNbO 3 -substrate structure, and evaluated their performance. The experiments showed that the temperature coefficient of frequency (TCF) increases with the fluorine content r, as we expected from the FT-IR measurement. This means that the Si-O-Si atomic structure measurable by the FT-IR governs the TCE behavior of SiO 2 -based films even when the dopant is added. In comparison with pure SiO 2 with the film thickness h of 0.3 wavelengths (λ), TCF was improved by 7.7 ppm/°C without deterioration of the effective electromechanical coupling factor K2 when r = 3.8 atomic % and h = 0.28λ. Fluorine inclusion did not obviously influence the resonators' Q factors when r &lt;; 8.8 atomic %.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>22297905</pmid><doi>10.1109/TUFFC.2012.2164</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-3010
ispartof IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2012-01, Vol.59 (1), p.135-138
issn 0885-3010
1525-8955
language eng
recordid cdi_proquest_miscellaneous_1010901560
source IEEE Electronic Library (IEL)
subjects Acoustic wave devices, piezoelectric and piezoresistive devices
Acoustics
Applied sciences
Atomic measurements
Atomic structure
Coefficients
Devices
Educational institutions
Electronics
Exact sciences and technology
Fluorine
Fourier transforms
Fundamental areas of phenomenology (including applications)
Physics
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Silicon dioxide
Silicon oxides
Studies
Surface acoustic wave devices
Surface acoustic waves
Temperature
Temperature compensation
Temperature measurement
Transduction
acoustical devices for the generation and reproduction of sound
title Use of fluorine-doped silicon oxide for temperature compensation of radio frequency surface acoustic wave devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T16%3A14%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20fluorine-doped%20silicon%20oxide%20for%20temperature%20compensation%20of%20radio%20frequency%20surface%20acoustic%20wave%20devices&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=Matsuda,%20S.&rft.date=2012-01&rft.volume=59&rft.issue=1&rft.spage=135&rft.epage=138&rft.pages=135-138&rft.issn=0885-3010&rft.eissn=1525-8955&rft.coden=ITUCER&rft_id=info:doi/10.1109/TUFFC.2012.2164&rft_dat=%3Cproquest_RIE%3E919948165%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=918909000&rft_id=info:pmid/22297905&rft_ieee_id=6138735&rfr_iscdi=true