Use of fluorine-doped silicon oxide for temperature compensation of radio frequency surface acoustic wave devices
This paper investigates acoustic properties, including the temperature coefficient of elasticity (TCE), of fluorine-doped silicon oxide (SiOF) films and proposes the application of the films to the temperature compensation of RF SAW devices. From Fourier transform infrared spectroscopy (FT-IR), SiOF...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2012-01, Vol.59 (1), p.135-138 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper investigates acoustic properties, including the temperature coefficient of elasticity (TCE), of fluorine-doped silicon oxide (SiOF) films and proposes the application of the films to the temperature compensation of RF SAW devices. From Fourier transform infrared spectroscopy (FT-IR), SiOF films were expected to possess good TCE properties. We fabricated a series of SAW devices using the SiOF-overlay/Cu-grating/LiNbO 3 -substrate structure, and evaluated their performance. The experiments showed that the temperature coefficient of frequency (TCF) increases with the fluorine content r, as we expected from the FT-IR measurement. This means that the Si-O-Si atomic structure measurable by the FT-IR governs the TCE behavior of SiO 2 -based films even when the dopant is added. In comparison with pure SiO 2 with the film thickness h of 0.3 wavelengths (λ), TCF was improved by 7.7 ppm/°C without deterioration of the effective electromechanical coupling factor K2 when r = 3.8 atomic % and h = 0.28λ. Fluorine inclusion did not obviously influence the resonators' Q factors when r |
---|---|
ISSN: | 0885-3010 1525-8955 |
DOI: | 10.1109/TUFFC.2012.2164 |