Coherent Radar Target Detection in Heavy-Tailed Compound-Gaussian Clutter
This paper deals with the problem of detecting a radar target signal against correlated non-Gaussian clutter, which is modeled by the compound-Gaussian distribution. We prove that if the texture of compound-Gaussian clutter is modeled by an inverse-gamma distribution, the optimum detector is the opt...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on aerospace and electronic systems 2012-01, Vol.48 (1), p.64-77 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper deals with the problem of detecting a radar target signal against correlated non-Gaussian clutter, which is modeled by the compound-Gaussian distribution. We prove that if the texture of compound-Gaussian clutter is modeled by an inverse-gamma distribution, the optimum detector is the optimum Gaussian matched filter detector compared to a data-dependent threshold that varies linearly with a quadratic statistic of the data. We call this optimum detector a linear-threshold detector (LTD). Then, we show that the compound-Gaussian model presented here varies parametrically from the Gaussian clutter model to a clutter model whose tails are evidently heavier than any K -distribution model. Moreover, we show that the generalized likelihood ratio test (GLRT), which is a popular suboptimum detector because of its constant false-alarm rate (CFAR) property, is an optimum detector for our clutter model in the limit as the tails get extremely heavy. The GLRT-LTD is tested against simulated high-resolution sea clutter data to investigate the dependence of its performance on the various clutter parameters. |
---|---|
ISSN: | 0018-9251 1557-9603 |
DOI: | 10.1109/TAES.2012.6129621 |